Friday, September 24						
1F 211	1F 212	1F 213	2F 221	4F 241	4F 242	
A-6: Organic Transistors and Device Physics I (Area 10) (9:00-10:45) Chairs: H. Maeda (DNP) H. Kajii (Osaka Univ.)	B-6: Junction Technology (Area 1) (9:00-10:45) Chairs: B. Mizuno (UJT Lab. Inc.) S. Migita (AIST)	C-6: Advanced CMOS Technology (Area 3) (9:00-10:45) Chairs: T. Hase (Renesas Electronics Corp.) B. Doris (IBM)	D-6: Photonic and Electronic Integration (Area 7) (9:00-10:30) Chairs: N. Iizuka (Toshiba Corp.) H. Isshiki (The Univ. of Electro-Communi- cations)	E-6: FeRAM (Area 4) (9:00-10:35) Chairs: T. Eshita (Fujitsu Semiconductor Ltd.) K. Ishihara (Sharp Corp.)	F-6: Spintronics (I) - Spin-related Phe- nomena and Applications (Area 12)- (9:30-10:45) Chairs: K. Ito (Hitachi, Ltd.) H. Saito (AIST)	
9:00 A-6-1 (Invited) Inkjet Printing of Organic Thin-Film Transis- tors T. Kawase, S. Moriya, K. Nakamura, K. Inoue, K. Nakamura and T. Aoki, Seiko Epson Corp. (Japan) The application of inkjet printing to the fabrication of organic TFT backplanes are reviewed. A hybrid approach in which inkjet printing is combined with photolithography is explained in detail. The phenomena happening in the inkjet printing of semiconductor are also discussed.	9:00 B-6-1 (Invited) Overview and Challenges in Source/Drain For- mation Technology in High Performance Tran- sistors. <i>K. Suguro, Toshiba Corp. (Japan)</i> Source and drain formation technologies which are required in next generation Si devices such as memory LSIs and system LSIs are overviewed and the new challenge for the future are discussed in this paper.	9:00 C-6-1 (Invited) Extremely-Thin SOI for Mainstream CMOS:Challenges and Opportunities A. Khakifirooz, K. Cheng, A. Kumar, P. Kulkarni, S. Ponoth, B. S. Haran, S. Mehta, J. Cai, A. Byrant, J. Kuss, L. F. Edge, H. Jagannathan, Z. Ren, A. Reznicek, S. Chang, S. Holmes, A. Majumdar, B. Jagannathan, D. Yang, A. Upham, S. C. Seo, J. L. Herman, R. Johnson, Y. Zhu, P. Jamison, Z. Zhu, L. H., Yanamurth, J. Fal- termeier, S. Fan, D. Horak, T. Hook, Y. Narayanan, F. Paruchuri, H. Bu, D. K. Sadana, P. Kozłowsk, B. Doris, D. McHerron, W. Haensch, M. Khare, E. Leobondung, J. O'Neil and G. Shahidi, IBM Research (USA) Extremely thin SOI (ETSOI) is a viable option for future CMOS scaling owing to superior short-channel control and immunity to random dopant fluctuation. However, challenges of ETSOI integration have so far hindered its adoption for mainstream CMOS. In this talk we review some of these challenges and possible solutions. We will also review some of the unique opportunities offered by ETSOI technology.	9:00 D-6-1 (Invited) Membrane-Type Photonic Devices for Optical Circuits on SOI S. Arai and N. Nishiyama, Tokyo Tech (Japan) Recent research activities on membrane-type pho- tonic devices, such as ultra-low power-consumption semiconductor lasers as well as passive optical devices based on high index-contrast waveguides, aiming at on-chip optical interconnection for next- generation LSIs will be presented.	9:00 E-6-1 (Invited) Current Status and Future Challenge of Fe- NAND/SRAM Cell Technology <i>K. Takeuchi, Univ. of Tokyo (Japan)</i> This paper overviews Ferroelectric NAND flash memory and Ferroelectric 6T-SRAM. Fe-NAND enhances SSD performance to 9.5GByte/sec. A 100Million write/erase endurance is realized. A 0.5V ferroelectric 6T-SRAM is proposed which decreases the active power by 32%.	9:30 F-6-1 Semiconductor / Ferromagnetic Metal Hybrid Optical Isolators using Nonreciprocal Polariza- tion Rotation <i>H. Shimizu, S. Goto and T. Mori, Tokyo Univ. of</i> <i>Agri, and Tech. (Japan)</i> We report Fe - InGaAIAs / InP semiconductor - ferromagnetic metal hybrid optical isolators using nonreciprocal polarization rotation. We demon- strated optical isolation of as large as 18.3 dB in 0.85 mm-long waveguide devices.	
9:30 A-6-2 Organic CMOS Logic Papers with In-Field User Customizability T. Sekitani ¹ , K. Ishida ¹ , N. Masunaga ¹ , R. Taka- hashi ¹ , S. Shino ² , U. Zschieschang ³ , H. Klauk ³ , M. Takamiya ¹ , T. Sakurai ¹ and T. Someya ¹ , 'Tokyo Univ.; ² Mitsubishi Paper Mills Ltd. and ³ Max Planck Inst. for Solid State Research (Japan) We report the manufacturing of user-customized logic paper—paper in which organic complemen- tary logic cells are embedded. The logic paper provides on-demand in-field customizability to the users by making use of commercially available inkjet printing.	9:30 B-6-2 Raised S/D for Advanced Planar MOSFET de- vices: Challenges and Applications for the 20nm Node and Beyond N. Loubet ¹ , P. Khare ¹ , S. Mehta ² , S. Ponoth ² , B. Haren ² , Q. Liu ¹ , K. Cheng ² , J. Kuss ² , T. Adam ² , B. Doris ² , V. Paruchuri ² , W. Kleemeier ⁴ and R. Samp- son ¹ , ¹ STMicroelectronics and ² IBM (USA) As transistor physical dimensions continue to scale, RSD epitaxy integration presents new challenges in term of loading effects, facet reproducibility and control. In this paper, the feasibility and integration of flat and faceted RSD silicon epitaxy are investi- gated.	9:30 C-6-2 Variability in Variable-Body-Factor Silicon-on- Thin-Box MOSFETs (SOTB MOSFETs) Y Yang, G. Du, R. Han and X. Liu, Peking Univ. (China) A side-gate is used in the variable-body-factor SOTB to adjust the body-factor, which will, how- ever, disturbs the variability performance of the	9:30 D-6-2 Towards Optical Networks-on-Chip Using CMOS Compatible III-V/SOI Technology L. Grenouillet', P. Philippe', J. Harduin', N. Olivi- er', P. Grosse', L. Liu ^{2,3} , T. Spuesens ² , P. Régreny ⁴ , F. Mandorlo', P. Rojo-Romeo', R. Orobtchouk', D. Van Thourhout' and J. M. Fedelt', ¹ CEA-LETIMI- NATEC, ² Ghent Univ, ³ Technical Univ of Denmark and ⁴ Institut des Nanotechnologies de Lyon INL (FRANCE) Integrated components for optical networks-on- chip, including III-V microdisk lasers, photode- tectors, and wavelength selective circuits, are all demonstrated using a complementary metal-oxide- semiconductor (CMOS) compatible III-V/silicon- on-insulator integration technology at 200mm wafer scale.	9:30 E-6-2 (Invited) Current Development Status and Future Chal- lenges of FeRAM Y. Fujimori, H. Kimura, Y. Ichida, J. Iida, K. Ashik- aga, H. Ito, T. Ozawa, T. Kanaya, N. Kinouchi, T. Suzuki, T. Date, D. Notsu, T. Fuchikami, Z. Zhiyong M. Kojima, M. Moriwake and H. Takasu, ROHM Co., Ltd. (Japan) FeRAM technology on 130nm logic platform is successfully developed. We introduce non-volatile logic for new application. The non-volatile register has wide signal margin and high endurance cycles.	9:45 F-6-2 Fabrication of MgO-based Magnetic Tunnel Junctions for Magnetic Field Sensor K. Fujiwara', M. Oogane', F. Kou', H. Na- ganuma' and Y. Ando', 'Tohoku Univ. and ² RICOH COMPANY,LTD. (Japan) Magnetic tunnel junctions sensor with an MgO bar- rier layer were fabricated. The effect of the shape and thickness of the free layer on the magnetic field sensor characteristics was systematically investi- gated. We achieved a large TMR/2H _k value of 4.8 %/Oe.	
9:45 A-6-3 Effects of an Interface Dipole Monolayer on Pentacene Organic Field-Effect Transistors W. Ou-Yang, K. Lee, W. Martin, T. Manaka and M. Iwamoto, Tokyo Tech (Japan) Effect of an aligned dipole monolayer with opposite mole-cular orientation on pentacene OFET perfor- mance was investigated. We found the monolayer greatly shifted threshold voltage, mobility and on/ off ratio and these changes depended on the mo- lecular orientation.	9:50 B-6-3 Raman Spectroscopy Measurement of Silicida- tion Induced Stress in Si and its Impact on Per- formances of Metal Source/Drain MOSFETs S. Migita, V. Poborchii, T. Tada, Y. Morita, W. Miz- ubayashi and H. Ota, AIST (Japan) Silicidation induced stress is examined by Raman spectroscopy. It is found that silicidation induces tensile stress in Si channel, and brings opposite temperature dependences of N-type and P-type metal S/D MOSFETs.	9:50 C-6-3 Universal Relationship between Settling Time of Floating-Body SOI MOSFETs and the Substrate Current in their Body-Tied Counterparts A. Toda ¹ , K. Ohyama ¹ , N. Higashiguchi ¹ , D. Hori ¹ , M. Miyake ¹ , S. Amakawa ¹ , J. Ida ² and M. Miura- Mattausch ¹ , 'Hiroshima Univ. and ² Kanazawa Inst. of Tech. (Japan) A device-size-independent universal relationship between hysteretic response of floating-body SOI MOSFETs and the dc substrate current in their body- tied counterparts is demonstrated. It could play an important role in compact modeling of history effects.	9:45 D-6-3	10:00 E-6-3 Synthesis of pure phase BiFeO3 films grown on Iridium electrode by MOCVD for ferroelectric memories Y. Kumura ^{1,2} , S. Yang ² , P. Yu ² , J. X. Zhang ² , J. Seidel ² , A. I. Khan ² and R. Ramesh ² , ¹ Toshiba Corp. and ² Univ. of California Berkeley (Japan) We have successfully demonstrated the feasible synthesis of the pure phase BFO films without voids grown on the submicron-sized Ir electrode by MOCVD using double-layered deposition method for the first time.	10:00 F-6-3 First-Principles Calculations of Quantum Trans- port Properties of Fe/Fe ₂ VAI/Fe Trilayers S. Yabuuchi, I. Kitagawa and T. Hamada, Hitachi, Ltd. (Japan) We investigated the electronic structure and the quantum transport properties of Fe/Fe ₂ VAI/Fe tri- layer using first-principles calculations. The semi- metallic Fe ₂ VAI made it possible to achieve a low resistance area, which is difficult to achieve using a conventional insulator or metal.	
10:00 A-6-4 Organic transistors and circuits with parylene gate dielectric manufactured using subfemtoliter inkjet <i>T. Yokota, Y. Noguchi, Y. Kato, T. Sekitani and T.</i> <i>Someya, Tokyo Univ. (Japan)</i> We fabricated organic TFTs and complementary ring oscillator circuits by subfemtoliter inkjet print- ing. The TFTs have a channel length smaller than 10 μm, a channel width 500 μm, and the 3 μm- linewidth Ag source/drain electrodes.	10:10 B-6-4 Accurate Measurement of Silicide Specific Con- tact Resistivity by Cross Bridge Kelvin Resistor for 28 nm CMOS technology and Beyond K. Ohuchi, N. Kusunoki and F. Matsuoka, Toshiba America Electronic Components, Inc. (USA) It is confirmed that specific-contact-resistivity measurement resolution by using modified cross- bridge Kelvin resistor is extended to $10^{\circ}\Omega$ -cm ² , and experimentally found 28nm-CMOS-technology realizes 1.1x10 ^s and 7.8x10 ^o Ω -cm ² for n+ and p+ source/drain, respectively.	10:10 C-6-4 Ion-Ioff performance analysis of FDSOI MOS- FETs with low processing temperature C. Xu', P. Battude', C. Ratuer', C. Le Royer', L. Hutin', A. Pouydebasque', C. Tabone', B. Previtali', O. Faynor', M. Mouis' and M. Vinet', 'CEA-LETI' MINATEC and 'IMEP (France) This work demonstrates that Fully-Depleted Sili- con On Insulator (FDSOI) transistors processed at	10:00 D-6-4 Monolithic One-bit Counter Circuit with Light Emitting Diode Indicators Fabricated in Si/III- V-N/Si Heterostructure S. Tanaka, K. Noguchi, K. Yamane, Y. Deguchi, Y. Furukawa, H. Okada, A. Wakahara and H. Yonezu, Toyohashi Univ. of Tech. (Japan) A monolithic one-bit counter circuit with LED indicators was fabricated, and was successfully op- erated. The fundamental properties of the circuits as well as the device characteristics were investigated.	10:20 E-6-4 (Late News) Ferroelectric-Gate Thin-Film Transistor Fabri- cated by Total Solution Deposition Process <i>T. Miyasako', B. N. Q. Trinh', T. Kaneda', M. On-</i> <i>oue', P. T. Tue', E. Tokumitsu'² and T. Shimoda^{1,3},</i> ¹ JST. ² Tokyo Tech and ³ JAIST (Japan) We have fabricated ferroelectric-gate thin film transistors (FGTs) by totally using chemical solu- tion deposition (CSD) process. The fabricated FGT exhibited a typical n-channel memory transistor op- eration. This is the first demonstration of inorganic thin film transistors (TFTs) fabricated by totally using CSD process for all layers.	10:15 F-6-4 Highly spin-polarized tunneling in Heusler-alloy- based magnetic tunnel junctions with a Co ₂ MnSi upper electrode and a MgO barrier H-x Liu, T. Taira, Y. Honda, K. Matsuda, T. Uemura and M. Yamamoto, Hokkaido Univ. (Japan) High tunnel magnetoresistance ratios of 1049% at 4.2 K and 335% at room temperature were dem- onstrated for Heusler-alloy-based magnetic tunnel junctions with a Co ₂ MnSi upper electrode and a MgO barrier. The key factors influencing the spin- dependent tunneling characteristics are discussed.	

Friday, September 24						
4F 243	4F 244	4F 245	4F 246	2F 222	2F 223	
G-6: Image Sensors and Interface Cir- cuits (Area 5 & 11) (9:00-10:45) Chairs: S. Sugawa (Tohoku Univ.) J. Akita (Kanazawa Univ.)	H-6: Cu Reliability (Area 2) (9:10-10:50) Chairs: S. Ogawa (AIST) K. Ito (Kyoto Univ.)	I-6: GaN Power Transistors (Area 6) (9:00-10:45) Chairs: E. Y. Chang (National Chiao Tung Univ.) T. Tanaka (Panasonic Corp.)	J-6: Nanowire Transistors (Area 13) (9:00-10:45) Chairs: S. Uno (Nagoya Univ.) K. Nishiguchi (NTT Basic Res. Labs.)	K-6: Quantum Dots (Area 8) (9:00-10:45) Chairs: A. Yamada (Tokyo Tech) T. Yamaguchi (Ritsumeikan Univ.)		
9:00 G-6-1 (Invited) CMOS High–Speed Image Sensors –Pixel De- vices, Circuits and Architectures– S. Kawahito, Shizuoka Univ. (Japan) CMOS high-speed image sensors are reviewed from the viewpoints of pixel devices and circuit techniques. Possible column-parallel ADC archi- tectures for power-efficient high-speed high-quality imaging and global shutter pixels for low noise are discussed.	9:10 H-6-1 (Invited) Cu Alloys and Noble Metal Liner Materials to Extend Damascene Cu Schemes <i>T. Nogami, IBM (USA)</i> CVD-Co films characterized (barrier properties and O/C incorporation), PVD-TaN/CVD-Co/PVD-Cu applied to Cu/ULK BEOL to produce reduced post- CMP defectivity and improved EM. However, EM advantage lost when divots due to corrosion formed at trench entrance.	The commercial introduction of GaN based power devices has opened new possibilities in power electronics. The current status and future prospects	9:00 J-6-1 (Invited) Circuit Implementation of InAs Nanowire FET W. Prost, K. Blekker, O. Benner and F. J. Tegude, University of Duisburg-Essen (Germany) We report on the fabrication of InAs nanowire metal-insulator field-effect transistor and their implementation in basic circuits. The position con- trolled deposition of the InAs nanowires within the pre-patterned circuits on the host substrate is done by the field-assisted fluid self-assembly method.	9:00 K-6-1 (Invited) Quantum Dot Superlattice for High Efficiency Intermediate Band Solar Cell Y. Okada, Univ. of Tokyo (Japan) Efficiency enhancements exceeding Shockley- Queisser limit of single junction solar cells are possible in an intermediate band solar cell, which incorporates a 3-dimensional quantum dot superlat- tice in the active region of a p-i-n junction structure. Recent experimental progress on multi-stacked quantum dot solar cells will be reviewed.		
9:30 G-6-2 A Column Parallel Cyclic ADC with an Embed- ded Programmable Gain Amplifier for CMOS Image Sensors T. lida, M. A. Mustafa, L. Zhuo, K. Yasutomi, S. Itoh and S. Kawahito, Shizuoka Univ. (Japan) This paper proposes a column parallel cyclic ADC with an embedded programmable gain amplifier. The measurement results of a prototype chip show the effectiveness of the embedded PGA for the re- duction of ADC non-linearity and random noise.	9:40 H-6-2 Migration of Copper through Tungsten-Filled Via on Single Damascene Copper Interconnect B. M. Kim, J. J. Kim, B. M. Seo, J. S. Oh, J. Y. Cho, J. Lee, K. Hong, B. H. Choi and S. Park, Hynix Semiconductor Inc. (Korea) A phenomenon of copper migration through tung- sten-filled vias, which land on single damascene copper underlayers, was examined. Successful miti- gation of this problem was demonstrated through the enhancement of barrier metal or the change of soaking gas from silane to diborane in CVD W deposition process.	9:30 1-6-2 Thermally Stable Isolation of AlGaN/GaN Tran- sistors by Using Fe Ion Implantation H. Umeda, T. Takizawa, Y. Anda, T. Ueda and T. Tanaka, Panasonic Corp. (Japan) Thermally stable isolation for AlGaN/GaN transis- tors by Fe ion-implantation is demonstrated. The Fe ions form deep levels after high temperature annealing. This technique enables high breakdown voltages and promising for monolithic integration of GaN devices.	9:30 J-6-2 Transport Physics of Quasi-Ballistic Nanowire MOSFETs K. Natori, Tokyo Tech (Japan) Transport physics of nanoscale MOSFETs is dis- cussed based on characteristics of nanowire MOS- FETs. The compact model discloses various new effects.	9:30 K-6-2 Energy transfer in multi-stacked InAs quantum dots <i>K. Akahane¹, N. Yamamoto¹, M. Naruse^{1,2}, T. Kawa- zoe², T. Yatsu² and M. Ohtsu², ¹Natl. Inst. of Info. & <i>Com. Tech. and</i> ²Univ. of Tokyo (Japan) We fabricated a modulated stacked QD structure to investigate energy transfer among QDs. Energy transfer from small QDs to large QDs was clearly observed. Long-range energy transfer can be con- sidered from the measurement of N dependence of PL intensity.</i>		
 9:50 G-6-3 A CMOS Image Sensor with an Automatic Pixel-Sensitivity Adjustment Function G. Ramos¹, Y. Hirata² and Y. Arima⁴, ¹Kyushu Inst. of Tech. and ³Fukuoka Indus., Sci. and Tech. Foun- dation (Japan) We developed an image sensor LSI that automati- cally adjusts the exposition time for each pixel according to the brightness of its surrounding pixels. The developed sensor LSI uses a 0.35µm CMOS 1-poly 3-metal process and has a die size of 3.75mm × 3.72mm. The power consumption is 267mW. 10:10 G-6-4 A Subnanowatt Vibration-sensing Circuit for Dust-size Battery-less Sensor Nodes T. Shimamura, H. Morimura, M. Ugajin and S. Mutoh, NTT Microsystem Integration Laboratories (Japan) 	gration Lifetime Scaling <i>C.V. Thompson, MIT (USA)</i> Pre-existing voids are common in Cu interconnects. They are also mobile and their dynamics affect reliability scaling in a critical way. Experimental observations and modeling will be reviewed. 10:30 H-6-4 Structure Analyses of Ti-Based Self-Formed Barrier Layers <i>K. Kohama[†], K. Ito[†], Y. Sonobayashi[†], K. Ohmori², <i>K. Moeri[*], K. Maekawa[*], Y. Shirai[†] and M. Muraka- mi[*], [*]Kyoto Univ., [*]Renesas Electronics Corp. and</i></i>	Shimizu ² , Y. Yano ³ and H. Nakanishi ¹ , ¹ Tokyo Univ. of Sci., ² AIST and ³ Taiyo Nippon Sanso Corp. (Ja-	 9:45 J-6-3 Body-biased steep-subthreshold-swing MOS (BS-MOS) with small hysteresis, off current, and drain voltage K. Nishiguchi and A. Fujiwara, NTT Corp. (Japan) We demonstrate 30-nm-gate-length nanowire MOS- FETs. A parasitic bipolar transistor formed in an SOI channel reduces subthreshold swing below 60 mV/dec at room temperature. Additionally, triple- gate operation allows current characteristics with small hysteresis, high on/off ratio, and low drain voltage. 10:00 J-6-4 Impacts of Diameter-Dependent Annealing in Silicon Nanowire MOSFETS R. Wang, T. Yu, W. Ding and R. Hung, Peking Univ. (China) The diameter-dependent annealing effect in silicon 	 Antimony Incorporation C. H. Chiang, Y. H. Wu, M. C. Hsieh, C. H. Yang, J. F. Wang, Y. C. Chang, L. Chang and J. F. Chen, National Chiao Tung Univ. (Taiwan) We present a study of surfactant effect from self-assembled InAs surface quantum dots grown on GaAs substrate by incorporating antimony (Sb) into the QD layers with various Sb beam equivalent pressure. 10:00 K-6-4 Structure changes caused by quenching of InAs/GaAs(001) quantum dots M. Takahasi, JAEA (Japan) Structures of InAs/GaAs(001) free-standing quantum dots before and after quenching were studied 		
The sensing circuit should be ultra-small power on the dust-size sensor node. We propose a vibration- sensing circuit based on mechanical charge transfer. The test chip detects the vibration of sub-hectohertz with subnanowatt power.	³ The Ritsumeikan Trust (Japan) Ti-based self-formed barrier layer has enough bar- rier properties against Cu diffusion into dielectrics. However, the structure and amorphous phases in the barrier layer were not directly identified. We employed an XPS technique with simultaneous Ar etching, to investigate the origin of such high per- formance of the barrier layer.	<i>pan</i>) Current collapse suppression using thick GaN cap layer in AlGaN/GaN HEMTs was proposed. Nu- merical simulations and experimental results show that thick GaN cap layer have effect in reducing carrier trapping in the device semiconductor sur- face.	nanowire MOSFETs is investigated. The implanted dopants diffuse faster in thin nanowires than those in thick nanowires during annealing process, which results in underestimating the nanowire S/D exten- sion length.	by in situ synchrotron X-ray diffraction. It has been revealed that quenching results in significant structure changes. They take place quickly when the substrate goes through a temperature range in which dislocatd islands are preferably formed.		

v Sontombor 24 Endo

1F 211	1F 212	1F 213	2F 221	4F 241	4F 242
A-6: Organic Transistors and Device Physics I (Area 10)	B-6: Junction Technology (Area 1)		D-6: Photonic and Electronic Integration (Area 7)		F-6: Spintronics (I) - Spin-related Phe- nomena and Applications (Area 12)-
10:15 A-6-5 Effects of Gold Nanoparticles on Pentacene Or- ganic Field-effect Transistors K. Lee ¹ , W. Ou-Yang ¹ , M. Weis ² , D. Taguchi ¹ , T. Manaka ¹ and M. Iwamoto ¹ , 'Tokyo Tech and 'Slo- wak Academy of Sciences (Japan) By incorporating gold nanoparticles into PVA with different concentrations as nanocomposite gate in- sulator in pentacene OFET, the carrier behaviour of the devices was studied by considering the carrier injection and transport processes in terms of contact resistance and effective mobility.	$S_{10,2}Ge_{0,8}/Ge$ isotope superlattice/ $S_{10,2}Ge_{0,8}$ hetero- structures. Furthermore, we found that Ge self-	Microelectronics, 'TMicroelectronics, 'Toshiba America, 'GLOBALFOUNDRIES and' Samsung Electronics (USA) A comprehensive study of high performance analog (HPA) devices integrated with high-k metal gate has shown that analog properties such as output voltage gain, Gm, Gds, Gm/ld, mismatch behavior, flicker noise, linearity, DC per- formance (e.g. Ion-Ioff, Ioff-Vista, DIBL, Cjswg) as well as reliability of HPA are superior to conventional analog	10:15 D-6-5 Monolithic Integration of Ga(NASP) laser on Si (001) Substrate S. Liebich', M. Zimprich', P. Ludewig', A. Beyer', B. Kunerč, N. Hossain', S. Jin', S. J. Sweeney', K. Volz' and W. Stolz', 'Philipps-Univ. Marburg, 'NASP UI/V GmbH and ³ Univ. of Surrey (Germany) Laser structures containing the dilute nitride mate- rial Ga(NASP) can be grown lattice matched on silicon substrates with high crystalline quality and low defect density. Lasing operation from broad area lasers up to 120K is verified.		10:30 F-6-5 Temperature Dependence of Magnetic Dampin in Heusler Alloy Thin Films M. Oogane, S. Mizukami, Y. Kota, T. Kubota, H. Naganuma, A. Sakuma and Y. Ando, Tohoku Univ. (Japan) The magnetic damping constants and their tem- perature dependence for the epitaxitially grown Co ₂ MnAl ₂ Si _{1-x} and Co ₂ Fe _x Mn _{1-x} Si Heusler alloy films were systematically investigated.
10:30 A-6-6 (Late News) Fabrication of Au electrodes with photopolymer- ization of triazine dithiol thin films <i>Y. Sato, R. Ye, K. Ohta and M. Baba, Iwate Univ.</i> (<i>Japan</i>) we fabricated electrodes of Au thin films on micro- pattern poly(DT) thin films photopolymerizated through a photomask. This process is easier and environment friendlier than the past process. Furthermore, we investigated OTFTs with the Au/ poly(DT) electrodes.		devices			
		Coffee Breal	x (2F Forum)		
A-7: Organic Transistors and Device Physics II (Area 10) (11:15-12:15) Chairs: H. Kajii (Osaka Univ.) K. Fujita (Kyushu Univ.)	B-7: Dopant Characterization (Area 1) (11:15-12:25) Chairs: Y. Hayami (Fujitsu semiconductor Ltd.) B. Mizuno (UJT Lab. Inc.)	C-7: FinFET Devices (Area 3) (11:15-12:35) Chairs: S. Hayashi (Panasonic Corp.) K. Okano (Toshiba Corp.)	D-7: Nano Photonics (Area 7) (11:15-12:00) Chairs: M. Tokushima (AIST) S. Saito (Hitachi, Ltd.)	E-7: MRAM (Area 4) (11:15-12:05) Chairs: S. Miura (NEC Corp.) T. Eshita (Fujitsu Semiconductor Ltd.)	F-7: Spintronics (∏) - New Application - (Area 12) (11:15-12:30) Chairs: Y. Ohno (Tohoku Univ.) K. Ito (Hitachi, Ltd.)
11:15 A-7-1 A Proposal of High Performance and Highly Fabricable Complementary Organic Thin Film Transistor Structure A. Sugawara, Y. Wada, Y. Ishikawa and T. Toyabe, Toyo Univ. (Japan) A Complementary Organic Thin Film Transistor (COTFT) structure is proposed, which would make it possible to realize high performance and highly fabricable organic integrated circuits, by using our original OTFT devices simulator, TOTAS.	11:15 B-7-1 (Invited) Dopant/carrier profiling in nanostructures. W. Vandervorst ^{1,2} , P. Eyben ¹ , A. Schulze ^{1,2} , J. Mody ^{1,2} , S. Koelling ^{1,2} , A. Kambham ^{1,2} and M. Gil- bert ¹ , ¹ IMEC and ² Instituut voor Kern- en Stralings- fysica (Belgium) Compositional and electrical analysis of nanostruc- tures involves extreme requirements ranging from "simple" 1D-depth resolution problems to metrol- ogy with high 2D-spatial resolution to the need to probe in an extremely small confined volume and 3D-devices. In this presentation we present an overview of the recent evolution in 1D, 2D, and 3D analysis.	11:15 C-7-1 Experimental Study of PVD-TiN Gate with Poly- Si Capping and Its Application to 20 nm FinFET Fabrication T. Kamei ¹ , Y. X. Liu ² , K. Endo ² , S. O'uch ² , J. Tsu- kada ² , H. Yamauch ² , Y. Ishikawa ³ , T. Hayashida ¹ , T. Matsukawa ² , K. Sakamoto ³ , A. Ogura ¹ and M. Masahara ² , ¹ Meiji Univ. and ² AIST (Japan) We have investigated threshold voltage (Vth) vari- ability and mobility of n ⁺ -poly-Si cap- ping is very effective to set a symmetrical Vth for FinFETs without mobility degradations.	11:15 D-7-1 InGAs Nano-Photodiode enhanced by Polariza- tion-Insensitive Surface-Plasmon Antenna D. Okamoto, J. Fujikata and K. Ohashi, NEC Corp. (Japan) We developed an InGaAs nano-photodiode incor- porated with a polarization-insensitive ring-type surface-plasmon antenna consisting of gold-based concentric-ring gratings. The antenna enables high quantum efficiency of 80% for any polarization of incident light and wider wavelength bandwidth.	11:15 E-7-1 (Invited) Current Status and Future Challenge of Embed- ded High-speed MRAM S. Fukami, T. Suzuki, K. Nagahara, N. Ohshima, S. Suitoh, R. Nebashi, N. Sakimura, H. Honjo, K. Mori, E. Kariyada, Y. Kato, K. Suemitsu, H. Tani- gawa, K. Kinoshita, S. Miura, N. Ishiwata and T. Sugibayashi, NEC Corp. (Japan) The DW-motion MRAM with 2T1MTJ cell struc- ture has been developed. We confirmed its potential to replace conventional embedded memories. Our technology will enable zero standby power con- sumption SoCs.	11:15 F-7-1 (Invited) Three-Terminal Spin-Momentum-Transfer Manetic Memory Element M. Gaidis, J. Sun, E. O'Sullivan, G. Hu, J. DeBro sse, J. Nowak, D. Abraham and P. Trouilloud, IBM (USA) SMT MRAM has potential as a nonvolatile memory with speed, density, endurance, and scaling. One can improve performance by separating the readir and writing functions of the device, adding a third terminal to the standard two-terminal device. We present the design and fabrication of the device, and high speed test results showing Ins switching.
11:30 A-7-2 Charge modulated reflectance measurement for probing carrier distribution in the pentacene field effect transistor <i>T. Manaka, S. Kawashima, Y. Tanaka and M. Iwa- moto, Tokyo Tech (Japan)</i> In this presentation, microscopic charge modulated reflectance spectroscopy was conducted to study the injected carrier distribution (n) in pentacene FET. Signal distribution along channel is clearly good agreement with the carrier distribution calculated on the basis of a simple carrier transport model. In combination with the EFISHG mentioned above, each parameters in J=enuE is discriminately evalu- ated	III:45 B-7-2 Hole generation in B-implanted Ge without annealing: Formation of B ₁₂ cluster acting as a double acceptor <i>M. Koike and Y. Kamimuta, MIRAI-Toshiba (Japan)</i> We present hole generation (max: 8x10^20 cm ⁻ -3) in B-implanted Ge without annealing. The activa- tion ratio in the wide range of impurity concentra- tions (10 ¹⁶⁻²² cm ⁻³) is almost the same value of 1/6. These results can be explained by assuming B12 cluster formation as a double acceptor in the as- implanted Ge.	11:35 C-7-2 High-k Metal Gate FinFET SRAM Cell Opti- mization Considering Variability due to NBTI/ PBT1 and Surface Orientation V. P. H. Hu, M. L. Fan, C. Y. Hsieh, P. Su and C. T. Chuang, National Chiao Tung Univ. (Taiwan) This paper analyzes the impact of intrinsic process variation and NBTI/PBT1 induced time-dependent variations on the stability/variability of 6T high-k metal gate FinFET SRAM cells with various sur- face orientations. Variability comparisons for Fin- FET SRAM cells with different gate stacks (SiO2 and SiO2/HfO2) are also examined.	11:30 D-7-2 Metallic Nano-Slit Array Lens for Spatial Reso- lution Improvement of In-vivo CMOS image sensor K. Sasagawa ^{1,2} , T. Noda, T. Tokuda, M. S. Islam ³ and J. Ohu ^{1,2} , 'NAIST, 'JST-CREST and ³ Univ. of California at Davis (Japan) We proposed a metallic nano-slit array lens for implantable in-vivo CMOS image sensor. And the electromagnetic fields were simulated by FDTD method. The results show that the incident angle is limited and the spatial resolution is improved by the structure.	11:45 E-7-2 Phenomenological model for stress and relax- ation processes of resistance drift in magnetic tunnel junctions Y. Kamakura, S. Nakano and K. Taniguchi, Osaka Univ. (Japan) A phenomenological model for stress and relaxation processes of resistance drift in AIOx based MTJs is proposed. By using the theological approach, the model can well reproduce the characteristics observed in various pulsed stress experiments.	11:45 F-7-2 (Invited) Spin dice: Random Number Generator using Current-induced Magnetization Switching in MgO-MTJs A. Fukushima, T. Seki, K. Yakushiji, H. Kubota, S. Yuasa and K. Ando, AIST (Japan) We propose a new type of physical random numb generator based on the current induced magnetiza tion switchings in MgO-MTJs, named spin dice. Random numbers are generated by the probabilis characteristic of the switchings. We fabricate spin dice in a circuit board style, and generate the ran- dom numbers at 500 kbit/sec.

ated.

	Friday, September 24						
4F 243	4F 244	4F 245	4F 246	2F 222	2F 223		
G-6: Image Sensors and Interface Cir- cuits (Area 5 & 11)	H-6: Cu Reliability (Area 2)	I-6: GaN Power Transistors (Area 6)	J-6: Nanowire Transistors (Area 13)	K-6: Quantum Dots (Area 8).)			
10:30 G-6-5 (Late News) A SPICE-based Multi-physics Seamless Simula- tion Platform for CMOS-MEMS T. Konishi ¹ , S. Maruyama ² , T. Matsushima ¹ , M. Mita ² , K. Machida ¹⁴ , N. Ishihara ⁴ , K. Masu ⁴ , H. Fujiti ² and H. Toshiyosh ² , ¹ /NT Advanced Tech- nology Corp., ² Univ. of Tokyo, ³ JAXA and ⁴ Tokyo Tech (Japan) We report a SPICE version of such multi-physics solver that is capable of microelectromechanical transient analysis, AC harmonic analysis, and elec- tro-mechanical mixed-signal simulation that can be performed seamlessly with the LSI simulation.		10:15 I-6-5 Reduced contact resistance and Improved sur- face morphology for Ohmic Contacts on AlGaN/ GaN based Semiconductors employing KrF Laser Irradiation G. H. Wang, T. Sudhiranjan ¹ , X. Wang ² , H. Y. Zheng ² , T. K. Chan ³ , T. Osipowicz ³ and Y. L. Foo ¹ , ¹ Inst. of Materials Res. And Eng., ³ Singapore Inst. Of Manufacturing Tech. and ³ National Univ. of Sin- gapore (Singapore) We employ excimer laser annealing for ohmic contact formation to n or ptype GaN. Laser anneal- ing achieved reduced sheet resistance in the contact formed, essential for high performance GaN light emitting diodes (LEDs) and heterostructure field- effect transistors applications. Forward current in LEDs increased due to the reduced contact resistance.	10:15 J-6-5 Single-electron transport through a Germanium- Nanowire Quantum Dot S. K. Shin ^{1,2} , S. Huang ¹ , N. Fukata ³ and K. Ishibashi ^{1,2} , 'RIKEN, ² Tokyo Inst. of Tech. and ³ Na- tional Inst. for Materials Sci. (Japan) Single-electron transistors using an n-type GeNW were fabricated. Pronounced Coulomb peaks with the equidistant spacing in Vg were observed. While the Coulomb peak heights were varied very much, the dimensions of Coulomb diamonds were identi- cal.	10:15 K-6-5 High-temperature phosphorous passivation of Si surface for improved heteroepitaxial growth of InAs as an initial step of III-As MOVPE on Si M. Deura, Y. Kondo, M. Takenaka, S. Takagi, Y. Shimogaki, Y. Nakano and M. Sugiyama, Univ. of Tokyo (Japan) We investigated the annealing effect on InAs growth, annealed in group-V gas ambient at much higher temperature than that during growth and the protection effect of group-V atoms during anneal- ing in terms of surface contamination.			
		10:30 I-6-6 Nonequilibrium Carrier Transport Observed in Pnp AlGaN/GaN HBTs K. Kumakura and T. Makimoto, NTT Corp. (Japan) We found nonequilibrium carrier transports in the nitride-based HBTs. They were ascribed to the high energy carrier injection into the base, and also to the carrier drift motion induced by the electric field inside the base.	10:30 J-6-6 A Theoretical Study of Electron Wave Function Penetration Effects on Electron-Modulated- Acoustic-Phonon Interactions in Silicon Nano- wire MOSFETS J. Hattort ¹³ , S. Uno ¹³ , N. Mort ²³ and K. Nakazato ¹ , ¹ Nagoya Univ, ² Osaka Univ. and ³ CREST-JST (Ja- pan) We have theoretically studied the interaction be- tween electrons and modulated acoustic phonons in gate biased silicon nanowires with taking into account electron wave function penetration into the oxide layer.	10:30 K-6-6 Growth of InAs Quantum Dots with Various Charged States on a Wafer Utilizing Concentric Distribution N. Kumagai', S. Ohkouchi', M. Shirane ^{1,2} , Y. Igarashi ^{1,2} , M. Nomura', Y. Ota', S. Yorozu ^{1,2} , S. Iywamoto' and Y. Arakawa', ¹ Univ. of Tokyo and ³ NEC Corp. (Japan) Using concentric distribution of QD density on a wafer, we obtain a series of QDs with charged ex- citonic states from positive to negative via neutral states at a time. As a result, we succeed in growth of InAs QDs with selectively charged states on a same wafer by only Si doping.			
		Coffee Brea	k (2F Forum)				
G-7: Data Converter Circuits (Area 5) (11:15-12:30) Chairs: M. Horiguchi (Renesas Electronics. Corp.) T. Koide (Hiroshima Univ.)	H-7: 3D Interconnect (Area 2) (11:15-12:25) Chairs: J. Gambino (IBM) J. Kodate (NTT)	I-7: Processing and Interface Technolo- gies (Area 6) (11:15-12:30) Chairs: K. S. Seo (Seoul National Univ.) K. Kumakura (NTT Corp.)	J-7: Nanowire Growth and Applications (Area 13) (11:15-12:30) Chairs: N. Aoki (Chiba Univ.) K. Tateno (NTT Corp.)	K-7: Growth and Characterization of Nitrides (Area 8) (11:15-12:30) Chairs: T. Iwai (Fujitsu Labs. Ltd.) M. Takahashi (JAEA)			
11:15 G-7-1 Qpix v.1: A high speed 400-pixels readout LSI with 10-bit 10MSps pixel ADCs F. Li, V. M. Khoa, M. Miyahara and A. Matsuzawa, Tokyo Tech (Japan) Qpix v.1 has been developed to realize large area applications and to increase the basic performance. It possesses 400 pixels and compact readout struc- ture to guarantee that all stored data in the pixels can be read out in 2.6 μs in parallel mode and 54 μs in serial mode.	 11:15 H-7-1 (Invited) 3D Integration Technology and 3D System-on- a Chip M. Koyanagi, Tohoku Univ: (Japan) A 3D super-chip integration technology using the reconfigured wafer-to-wafer bonding and multichip-to-wafer bonding in presented. In addition, new 3D-SoCs such as a 3D microprocessor, 3D-stacked image processor and 3D dependable SoC are discussed. 	11:15 I-7-1 Deep level characterization of MOVPE-grown AlGaN with high Al compositions S. Okuzaki', K. Sugawara', H. Taketomi ² , H. Mi- yake ² , K. Hiramatsu ² and T. Hashizume ¹ , 'Hokkaido Univ. and ² Mie Univ. (Japan) We investigate Schottky interface properties and deep levels of Al _i Ga _{1,x} N with a wide range of Al composition (0.25 <x<0.60) by="" photo-<br="" using="" x-ray="">electron spectroscopy (XPS), I-V, C-V, and deep level transient spectroscopy (DLTS).</x<0.60)>	11:15 J-7-1 Al-doped Zinc Oxide Field Emitter Array Con- trolled by High-Voltage Poly-Si Thin Film Tran- sistor P. Y. Yang', J. L. Wang', W. C. Tsai ³ , S. J. Wang ³ , J. C. Lin ⁴ , J. C. Led ² , C. T. Chang' and H. C. Cheng', 'National Chiao Tung Univ., ^A Ming Chi Univ. of Technology, ³ National Cheng Kung Univ. and ⁴ St. John's Univ. (Taiwan) The hydrothermally grown Al-doped ZnO nano- wires were controlled by high-voltage poly-Si thin film transistor to improve the anode current stability of field emitter.	11:15 K-7-1 (Invited) Droplet elimination process by radical beam irradiation for the growth of InN-based III- nitrides and its application to device structure <i>T. Yamaguchi and Y. Nanishi, ¹Ritsumeikan Univ.</i> and ² Seoul National Univ. (<i>Japan</i>) A new method, named droplet elimination by radical beam irradiation (DERI), is proposed for the reproducible growth of high-quality InN. This method is also applied to the growth of Mg-doped InN and undoped InGaN toward the application to device structure.			
11:35 G-7-2 A 0.5V 1.4mW 750MHz 10b CMOS Current Steering DAC N. Shimasaki, R. Ito, M. Miyahara and A. Matsu- zawa, Tokyo Tech (Japan) An ultra-low voltage and power of 0.5 V and 1.4 mW, yet high speed of 750 MHz CMOS 10 bit current DAC has been developed using digital feed- back technique and forward body biasing.	11:45 H-7-2 Evaluation of Copper Diffusion in Thinned Wafer with Extrinsic Gettering for 3D-LSI by Capacitance-Time(C-1) measurement" J. C. Bea, K. W. Lee, M. Murugesan, T. Fukushima, T. Tanaka and M. Koyanagi, Tohoku Univ. (Japan) The effects of extrinsic gettering(EG) layers formed on p/p- wafers and p/p+ wafers by backside grinding and the following chemical mechanical pelicipic(CMP), dru solibility(CMP) and when	11:30 1-7-2 Direct Liquid Cooling Technology for Power Semiconductor Devices N. Otsuka, S. Nagai, M. Yanagihara, Y. Uemoto and D. Ueda, Panasonic Corp. (Japan) We first demonstrate the reduction of junction temperatures in direct liquid cooling (DLC) of GaN power devices for high power and high voltage switching applications. In the DLC structure, junc- tion tormenture architeging of un to StV or 1000-	C. H. Lee ^{1,2} , J. Yoo ^{1,2} , Y. J. Hong ^{1,2} , J. Cho ¹ , Y. J. Kim ^{1,2} , S. R. Jeon ³ , J. H. Baek ³ and G. C. Yi ¹ , ¹ Seoul	11:45 K-7-2 Reduction of S-parameter by the Introduction of Nitrogen in GaNAs: Positron Annihilation and Its Comparative Study with Photoluminescence Spectroscopy H. Nakamoto', F. Ishikawa', M. Kondow', Y. Ohshima', A. Yabuchi', M. Mizuno', H. Araki' and Y. Shirai', 'Osaka Univ. and 'Kyoto Univ. (Japan) The introduction of nitrogen into GaNAs reduces S. promote geomerach to GaAs and that ung further			

tion temperature reductions of up to 55K or 100% higher power levels were demonstrated, and the

thermal resistance was reduced as much as 32%.

polishing(CMP), dry polishing(DP) and ultrapoligrind(UPG) methods against metallic contami-

nation induced has been investigated.

1F 211	1F 212	1F 213	2F 221	4F 241	4F 242
A-7: Organic Transistors and Device Physics II (Area 10)	B-7: Dopant Characterization (Area 1)	C-7: FinFET Devices (Area 3)	D-7: Nano Photonics (Area 7)	E-7: MRAM (Area 4)	F-7: Spintronics (Ⅱ) - New Applications - (Area 12)
11:45 A-7-3 Bias-temperature-instability and thermal anneal effects of organic thin-film transistors P. H. Chen ¹ , P. Y. Lo ^{1,2} , T. S. Hu ¹ and P. W. Li ¹ , ¹ National Central Univ. and ² Indus. Tech. Res. Inst. (Taiwan) Top-gate organic thin film transistors were fab- ricated and characterized in a temperature range of 300-370 K. In addition to thermally activated charge trapping and ion drift mechanisms, the trap numbers elimination at the P3HT/PVP and the dop- ant deactivation or bipolaron formation in P3HT are also possible origin for OTFTs instability.	12:05 B-7-3 Contribution of Carbon to Growth of Boron- Containing Cluster in Heavily B-doped Silicon H. Itokawa ^{1,2} , A. Ohta ² , M. Keda ² , I. Mizushima ¹ and S. Miyazaki ² , ¹ Toshiba Corp. and ² Hiroshima Univ. (Japan) It is well-known that substitutional C atoms can capture excess self-interstitial Si atoms and sup- press the diffusion of ion-implanted interstitial-type dopants such as B in Si. In the case of B concen- tration as much as -1×10^{21} cm ³ , the B activation ratio in Si is decreased with C incorporation.	11:55 C-7-3 Advantage of Plasma Doping for Source/Drain Extension in Bulk-FinFET T. Izumida, K. Okano, T. Kanemura, M. Kondo, S. Inaba, S. Itoh, N. Aoki and Y. Toyoshima, Toshiba Corp. (Japan) We demonstrate the efficiency of plasma doping on the fabrication of a bulk-FinFET, showing detailed boron distributions in a narrow fin region analyzed by atom-probe tomography and SIMS, and device characteristics calculated by 3D simulations.	11:45 D-7-3 Enhanced Sensitivity of SOI Photodiode by Au Nanoparticles Y. Matsuo, A. Ono, H. Satoh and H. Inokawa, Shi- zuoka Univ: (Japan) We demonstrated the enhancement of the quantum efficiency of SOI photodiode with Au nanparticles. The en-hancement mechanism is explained by the increment of the effective path in SOI due to the scattering and the multiple reflections.		12:15 F-7-3 High-speed MRAM Random Number Generator using Error-Correcting Code T. Tetsufumi, N. Shimomura, S. Ikegawa, M. Matsu- moto, S. Fujita and H. Yoda, Toshiba Corp. (Japan, A high speed random number generator (RNG) circuits based on magnetoresistive-random-access- memory (MRAM) using error-correcting coding (ECC) post-processing circuits is presented. It is shown that this post-processing block can be shared with conventional memory ECC block and power- fully improves the quality of randomness with minimum overhead.
12:00 A-7-4 Transport Mechanism at the First-layered Pen- tacene Grains and Grain Boundaries Y. Hu ¹² , L. Wang ¹ , Q. Qi ¹ and C. Jiang ¹ , ¹ National Center for Nanoscience and Tech. and ² Chinese Academy of Sci. (China) We have performed both experimental and theoreti- cal researches of transport mechanism in first layer grains and grain boundaries of the pentacene films and found that the grain boundary model is valid both in grain size dependent and temperature de- pendent mobility experiments.		12:15 C-7-4 FinFETs Junctions Optimization by Convention- al Ion Implantation for (Sub-)22nm Technology Nodes Circuit Applications A. Veloso, A. De Keersgieter, S. Brus, N. Horiguchi, P. P. Absil and T. Hoffmann, IMEC (Belgium) This work demonstrates a junctions formation methodology for aggressively scaled FinFET devices, using conventional ion implantation, and compatible with dense pitches applications, without penalty in RSD nor device performance, and yield- ing higher SRAM SNM values.			

12:30-13:30 Lunch							
A-8: Organic Transistors and Device Fabrication I (Area 10) (13:30-15:00) Chairs: H. Usui (Tokyo Univ. of Agri. & Tech.) M. Yoshida (AIST)	C-8: Gate-Insulator Reliability (Area 1) & (Area 3) (13:30-15:10) Chairs: B. Doris (IBM) B. H. Lee (GIST)	D-8: Si Photonics (1) (Area 7) (13:30-15:15) Chairs: H. Isshiki (The Univ. of Electro-Communi- cations) N. lizuka (Toshiba Corp.)	E-8: PRAM/ReRAM (Area 4) (13:30-15:15) Chairs: Y. C. Chen (Macronix International Co., Ltd.) M. Moniwa (Renesas Electronics Corp.)	F-8: Spintronics (III) - Semiconductors - (Area 12) (13:30-15:00) Chairs: M. Yamamoto (Hokkaido Univ.) S. Kuroda (Univ. of Tsukuba)			
13:30 A-8-1 (Invited) Materials and Processes for Air-Stable n-Chan- nel Organic Transistors J. H. Oh ^{1,2} and Z. Bao ¹ , ¹ Stanford Univ. and ² UNIST (USA) Recently, there has been a remarkable progress in the molecular design, device performance and sta- bility for n-channel OTFTs. Herein we report recent progress in materials design and processes for high- performance air-stable n-channel OTFTs, mainly focusing on the development of most-commonly used n-channel semiconductors, i.e., perylene diim- ide (PDI) and naphthalene diimide (NDI) deriva- tives.	 13:30 C-8-1 Using Power Transform to Study DC and AC CHC Effects on nMOSFETs in 65 nm Technology S. Y. Chen¹, C. H. Tu¹, M. X. Wu¹, H. S. Huang¹, Z. W. Jhou², S. Chou² and J. Ko², ¹National Taipei Univ. of Tech. and ²United Microelectronics Corp. (Taiwan) For the first time, this article is to use power transform to describe nMOSFET degradation due to DC and AC CHC stress. The power transform model is a function of voltage (Va, Va²V), current (Ia, Ja), and temperature (T). All the results show that the power transform model can well fit the experimental data of DC and AC CHC stress. 	13:30 D-8-1 (Invited) Nanophotonic On-Chip Interconnection Net- works for Energy-Performance Optimized Com- puting A. Biberman and K. Bergman, Columbia Univ. (USA) Much recent progress in silicon nanophotonic technology has enabled the prospect of high-per- formance nanophotonic networks-on-chip (NoCs), which have become very attractive solutions to the growing bandwidth and power consumption chal- lenges of future high-performance chip multipro- cessors.	13:30 E-8-1 (Invited) A Survey of Cross Point Phase Change Memory Technologies D. Kau, Intel Corp. (USA) Among the recent advances in phase change memory and the integrated selector, stackable thim- film cross point memory delivers the densest array, therefore the most compact die size. Combining its attributes in cost, performance and reliability, cross point phase change technologies stimulate potential opportunities in computing memory hierarchy.	13:30 F-8-1 (Invited) Magnetic anisotropy of GaMnAs and its applica- tion for multi-valued memory device S. Lee ¹ , T. Yoo ¹ , S. Khym ¹ , H. Lee ¹ , S. Lee ¹ , S. Kim ¹ , J. Shin ¹ , X. Liu ² and J. K. Furdyna ² , ¹ Korea Univ. and ² Univ. of Notre Dame (Korea) We present interesting magnetic anisotropy prop- erties and realization of four resistance states in single layer of GaMnAs film. We demonstrate such four resistance sates can be used for a quaternary memory device.			

4F 243	4F 244	4F 245	4F 246	2F 222	2F 223
G-7: Data Converter Circuits (Area 5)	H-7: 3D Interconnect (Area 2)	I-7: Processing and Interface Technolo- gies (Area 6)	J-7: Nanowire Growth and Applications (Area 13)	K-7: Growth and Characterization of Nitrides (Area 8)	
 11:55 G-7-3 Low-Complexity Time-Domain Winner-Take-All Circuit with High Time-Difference Resolution Limited only by With-In-Die Variation M. Yasuda, T. Ansari, W. Inafuku, A. Kawabata, T. Koide and H. J. Mattausch, Hiroshima Univ. (Ja- pan) The time-domain Winner-Take-All (WTA) circuit detects the first arriving signal and determines the winner. In this paper, a time-domain WTA circuit with high time-difference resolution limited only by with-in-die variation is developed. 	12:05 H-7-3 Through Silicon Photonic Via with Si core for Low loss and High Density Vertical Optical In- terconnection in 3D-LSI A. Noriki, K. W. Lee, J. Bea, T. Fukushima, T. Tanaka and M. Koyanagi, Tohoku Univ. (Japan) We proposed through-Si photonic via with Si core (TSPV) for low-loss and high-density vertical opti- cal interconnection in 3D-LSI. We confirmed light confinement of the TSPV and showed feasibility of very fine TSPV by 2D-FDTD simulation.	11:45 1-7-3 Impact of Interface States and Bulk Carrier Lifetime on Photocapacitance of Metal/Insula- tor/GaN Structure P. Bidzinski', M. Miczek', B. Admowicz', C. Mizue ² and T. Hashizume ² , 'Silesian Univ. of Tech. and ² Hokkaido Univ. (Poland) The capacitance of a metal/insulator/GaN ultravio- let detector has been calculated versus the light ex- citation intensity and the gate voltage. The influence of the interface states and bulk carrier lifetime on the photodetector characteristics has been discussed and the calculation results have been compared with experimental data.	11:45 J-7-3 Electrical Characterization of InGaAs nanowire MISFETS Fabricated by Dielectric-first Process Y. Kohashi ¹ , T. Sato ¹ , K. Tomioka ¹² , S. Hara ¹ , T. Fukui ¹ and J. Motohisa ¹ , ¹ Hokkaido Univ. and ² JST- PRESTO (Japan) We attempted gate-dielectric-first process to fab- ricate MISFETs using single InGaAs nanowires formed by selective-area MOVPE. We obtained improved maximum drain current as compared to our previous nanowire FETs.	Selective-Area Metalorganic Vapor Phase Epitaxy T. Akasaka, Y. Kobayashi and M. Kasu, NTT Corp.	
12:15 G-7-4 (Late News) 3.6-Times Higher Acceptable Raw Bit Error Rate, 97% Lower-Power, NV-RAM & NAND- Integrated Solid-State Drives (SDS) with Adap- tive Codeword ECC <i>M. Fukuda, K. Higuchi, S. Tanakamaru and K.</i> <i>Takeuchi, Univ. of Tokyo (Japan)</i> An adaptive codeword ECC is proposed for NV- RAM/NAND integrated SSDs. The acceptable raw bit error rate before ECC of NV-RAM and NAND increases by 3.6-times. The 10Gbps high-speed write is achieved with 97% power reduction.		12:15 I-7-5 New Stacked MIM Capacitors with a Side- contact Formation Technology <i>T. Tsutsumi, S. Sugitani, K. Nishimura and M. Ida,</i> <i>NTT Corp. (Japan)</i> We proposed new stacked MIM capacitors with electrical side-contacts, which enable to be fabri- cated with very few masks and a short turn-around time. We successfully fabricated five-layer stacked MIM capacitor and increase capacitance density	 12:00 J-7-4 Lateral GaAs nanowires with triangular and trapezoidal cross-sections grown on (311)B and (001) substrates G. Zhang, K. Tateno, H. Gotoh and T. Sogawa, NTT Corp. (Japan) The cross-sectional shape of lateral nanowires can be varied by using substrates with different orientations. Lateral nanowires with triangular and trapezoidal cross-sections were grown on (311)B and (001) substrates. 12:15 J-7-5 C-V Characteristics and Analysis of Undoped Gate-All-Around Nanowire FET Array R. H. Baek¹, C. K. Baek², S. H. Lee¹, S. D. Suk³, M. Lt³, Y. Yeoh³, K. H. Yeo³, D. W. Kim³, J. S. Lee¹⁴, D. M. Kim⁴ and Y. H. Jeong¹⁴, 'POSTECH, 'Korea Institute for Advanced Study (KLAS), 'Samsung Electronics Company and 'National Center for Nanomaterials and Technology (NCNT) (Korea) We analyzed the effect of undoped and floating 	12:15 K-7-4 Enhanced optical characteristics of light-emit- ting-diode by localized surface plasmon of Ag/ SiO, nanoparticles L. W. Jang', T. Sahoo', D. S. Jo', J. W. Yoo', J. W. Jeon', S. M. Li', Y. H. Cho' and I. H. Lee', 'Chon- buk National Univ. and 'KAIST (Korea) We investigated the localized surface plasmon cou- pling behavior in LED by Ag/SiO2 nanoparticles. The PL intensity of Ag/SiO2 coated sample was enhanced by 50 % due to the energy coupling be- tween MQW-SP of Ag/SiO2.	
		from 0.30 fF/µmm ² to 1.51 fF/µmm ² .	channel on the nanowire C-V curves and extracted accurate inversion charge and mobility. The mea- sured data were compared extensively with conven- tional planar MOS capacitor data.		

12:30-13:30 Lunch

G-8: Bio Nanofusion Technologies (Area 11) (13:30-15:00) Chairs: J. Ohta (NAIST) M. Sasaki (Toyota Technological Inst.)	H-8: 3D Integration (Area 2) (13:30-14:55) Chairs: T. Fukushima (Tohoku Univ.) G. Beyer (IMEC)	I-8: Crystulline and Thin Film Silicon Solar Cell (I) (Area 14) (13:30-15:15) Chairs: G. Coletti (ECW Solar Energy) A. Masuda (AIST)	K-8: Si and Ge-based Materials and De- vices (Area 8) (13:30-15:00) Chairs: H. Hibino (NTT Basic Res. Labs.) A. Yamada (Tokyo Tech)	
13:30 G-8-1 (Invited) Novel Quantum Effect Devices realized by Fu- sion of Bio-template and Defect-Free Neutral Beam Etching S. Samukawa ^{2,} , 'Tohoku Univ. and ² JST (Japan) A 2D Si ND array with a high-density and well- ordered arrangement could be fabricated by using bio-template and damage-free CI neutral beam etching. In this structure, the controllable band gap energy (from 2.2eV to 1.4eV) and high photon ab- sorption coefficient (>105 cm ²) could be obtained at RT by controlling the Si-ND structure.	13:30 H-8-1 (Invited) Low temperature bonding for 3D integration T. Suga, Univ. of Tokyo (Japan) The surface activated boding (SAB) is a highly potential method providing a low temperature interconnect process inevitable for 3D integration. The applications of SAB are demonstrated on Cu direct bonding, and hetero-semiconductor wafer bonding, and the future outlook of the method will be discussed.	13:30 I-8-1 (Invited) Crystalline Silicon Solar Cells, Thinner the Bet- ter <i>Y. Hayashi¹², ¹AIST and</i> ² Univ. of Tsukuba (Japan) Historical trajectory of research and development of the very and ultra thin CSi solar cell/module was reviewed. According to theoretical and experimen- tal reports, more than 20% efficiency with about 10 micro-meter thick cell is one of future targets.	 13:30 K-8-1 Very high mobility 2D holes in strained Ge quantum well epilayers grown by Reduced Pressure Chemical Vapor Deposition M. Myronov¹, K. Savano², D. R. Leadley¹ and Y. Shiraki², ¹Univ. of Warwick and ²Tokyo City Univ. (UK) For the first time, we report a very high 2DHG mobility obtained in compressive strained Ge QW epilayers grown on SiGe/Si(100) virtual substrate by an industrial type RP-CVD technique. 	

		Friday, Sej	ptember 24		
1F 211	1F 212	1F 213	2F 221	4F 241	4F 242
A-8: Organic Transistors and Device Fabrication I (Area 10)		C-8: Gate-Insulator Reliability (Area 1) & (Area 3)	D-8: Si Photonics (1) (Area 7)	E-8: PRAM/ReRAM (Area 4)	F-8: Spintronics (${\rm III})$ - Semiconductors (Area 12)
14:00 A-8-2 3 V-driven flexible organic transistors with mo- bility exceeding 2 cm ⁷ /Vs K. Fukuda ¹ , N. Uchiyama ¹ , T. Sekitani ¹ , U. Zschi- eschang ² , H. Klauk ² , T. Yamamoto ³ , K. Takimiya ³ and T. Someya ¹ , Tokyo Univ., ³ Max Planck Inst. and ¹ Hiroshima Univ. (Japan) We fabricated organic TFTs using DNTT as p-type semiconductors and phosphonic acid self-assem- bled monolayers (SAMs) as gate insulators, and optimized the transistor characteristics by changing the alkyl chain length of the SAMs.		13:50 C-8-2 Effect of Hot-Carrier Stress on the Recoverable and Permanent Components of Negative-Bias Temperature Instability T. J. J. Ho ['] , D. S. Ang ['] and C. M. Ng ² , ¹ Nanyang Tech. Univ. and ² GLOBALFOUNDRIES Singapore Pte. Ltd. (Singapore) Channel hot-hole stressing is found to reduce the apparent recoverable component of NBTI under 0-V recovery. Results show that this is a conse- quence of an increase in the density of deep-level hole traps.	S. Arai, Tokyo Tech (Japan)	14:00 E-8-2 A SiO ₂ Nano-thermal Unipolar 0T-1R ReRAM Device with Built-in Diode Isolation K. P.Chang, H. T. Lue, K. Y. Hsieh and C. Y. Lu, Macronix Int' Co., Ltd. (Taiwan) Unipolar ReRAM devices using SiO2 as the storage node and an in-situ formed diode as the isolation device are studied. The extremely simple process promises potential for very low cost high-density storage.	14:00 F-8-2 (Invited) Electrical detection of Spin Transport in Si usin High-quality Schottky Contacts <i>K. Hamaya^{1,2}, Y. Ando² and M. Miyao¹, ¹Kyushu</i> Univ. and ² PRESTO, JST (Japan) We show high-quality formation of ferromagnetic Schottky source and drain contacts for spin-tran- sistor applications, and demonstrate electrical spin injection and detection in Si using these contacts.
14:15 A-8-3 Different interfacial carrier behaviors between a-NPD and pentacene double-layer device with a polyimide blocking-layer by time-resolved opti- cal second harmonic generation <i>L. Zhang, D. Taguchi, J. Li, T. Manaka and M. Iwa-</i> <i>moto, Tokyo Tech (Japan)</i> The paper reports totally different carrier behaviors in a-NPD and pentacene layer in a double-layer structure by using time-resolved second harmonic generation techniques.		14:10 C-8-3 Effect of Positive Gate Stressing on the Recover- able Component of Negative-Bias Temperature Instability A. A. Boo', D. S. Ang ¹ , Z. Q. Teo ¹ and C. M. Ng ² , ¹ Nanyang Tech. Univ. and ² GLOBALFOUNDRIES Singapore Pte. Ltd. (Singapore) Positive gate stressing of the p-MOSFET is found to reduce the recoverable component (R) of NBTI. This finding contradicts a current viewpoint which ascribes R to preexisting and/or high-field induced oxide trap generation.	14:15 D-8-3 Analysis of Vertically Stacked Structures of 2D PC Cavity and Amorphous-Silicon-Wire Wave- guide with Low-Refractive-Index Material Clad- ding T. Yamada ^{1,2} , M. Okano ² , Y. Sakakibara ² , T. Kamei ² , J. Sugisaka ^{1,2} , N. Yamamoto ² , M. Itoh ¹ , T. Sugaya ² , K. Komori ² and M. Mori ² , ⁴ Unix: of Tsukuba and ² AIST (Japan) We proposed and theoretically investigated a highly-efficient light-extraction means from a 2D PC cavity to a silicon-wire waveguide with low- refractive-index material cladding. The high light- extraction efficiency over 90% is achieved.	14:20 E-8-3 Resistive Switching Device for Neuromorphic Device Application K. Seo, I. Kim, S. Park, S. Jung, M. Siddik, J. Park, J. Kong, K. Lee, B. Lee and H. Hwang, GIST (Ko- rea) We mimicked various Spike Timing Dependence Plasticity (STDP) synaptic rules via resistive switching device. We showed potentiating, depress- ing and uniformity as well as frequency and weight dependency of the device for future neuromorphic application.	14:30 F-8-3 Spin injection into GaAs from Fe/GaO _x Tunnel Injector H. Saito ¹ , J. C. Le Breton ² , V. Zayets ¹ , Y. Mineno ^{1,3} , S. Yuasa ² and K. Ando ¹ , National Inst. of Adv. In- dus. Sci. and Tech, ² Univ. of Twente and ³ Toho Univ (Japan) We examined the electrical injection of spin-polar- ized electrons into a GaAs-based light-emitting di- ode structure from a Fe/GaO _x tunnel injector whose electron-charge injection efficiency was comparable to that of a conventional Fe/n [*] AlGaAs ohmic inject tor.
14:30 A-8-4 Megahertz Operation of Rectifier Circuits using Pentacene Thin-Film Transistors M. Kitamura and Y. Arakawa, Tokyo Univ. (Japan) We report on rectification properties of pentacene transistor diodes. The transistor diodes successfully rectify an AC voltage at a frequency above 1 MHz into a DC voltage without decrease in the output voltage.		14:30 C-8-4 Investigation of Recovery Effects on Degraded pMOSFETs of 65 nm Technology with Different Annealing Temperatures S. Y. Chen', C. H. Tu', Y. F. Chen', H. S. Huang', Z. W. Jhou', S. Chou' and J. Ko', 'National Taipei Univ. of Tech. and ² United Microelectronics Corp. (Taiwan) This study shows that CHC and NBTI-induced Nit can be largely recovered after annealing. It is considered that only reaction mode occurs during the degradation and recovery phases, minor or no diffusion mode has occurred.	Rib Waveguide	14:40 E-8-4 "A Novel NiWO _X /W ReRAM with Excellent Retention and Low Switching Current" W.C. Chien ¹ , Y.C. Chen ¹ , F.M. Lee ¹ , Y.Y. Lin ¹ , E.K. Lai ¹ , Y.D. Yao ² , J. Gong ² , S.F. Horng ² , C.W. Yeh ¹ , S.C. Tsai ¹ , C.H. Lee ¹ , Y.K. Huang ¹ , C.F. Chen ¹ , H.F. Kao ¹ , Y.H. Shih ¹ , K.Y. Hsieh ¹ and C. Y. Lu ¹ , ¹ Ma- cronix Inl'I Co., Ld., ² Fu Jen Univ: and ¹ National Sing Hua Univ. (Taiwan) The top electrode (TE) material plays an important role in WOX ReRAM characteristics. A novel Ni TE WOX ReRAM shows superior performances such as a switching current density < 8x105A/cm2, > 100X resistance ratio window, and extremely good data retention of > 300 years at 85 °C.	14:45 F-8-4 Large magnetoresistance of Ge _{1.x} Mn, single film and heterostructures with magnetic nanocol- umns <i>S. Yada, R. Okazaki and M. Tanaka, Univ. of Tokyo</i> (<i>Japan</i>) We observed large positive magnetoresistance in single films and heterostructures of Ge _{1.x} Mn, with amorphous Ge _{1.x} Mn nanocolumns. Hysteretic behavior of magnetoresistance was also observed in the heterostructure, which might be caused by magnetization of Ge _{1.x} Mn _x .
14:45 A-8-5 Realization of Pentacene-based Thin Film Tran- sistor Arrays for Large-area Organic Electronics Being Compatible with the Roll-to-Roll Manu- facturing Technique L. Wang ²⁺ , D. Li ² and C. Jiang ¹ , ¹ National Center for Nanoscience and Tech. and ¹ Chinese Academy of Sci. (China) In this work a vacuum thermal evaporation (VTE) is extended to a VTE-roller method that may be compatible with a roll-to-roll manufacturing technique. We show that the technique combines high uniformity with excellent performance of the deposited arrays of OTFTs on large areas.		14:50 C-8-5 Gate Leakage Current Reduction in Two-Step Processed High-k Dielectrics for Low Power Ap- plications G. Bersuker', D. Heh', J. Huang', C.S. Park', A. Padovani, L. Larcher', P. D. Kirsch' and R. Jammy', 'SEMATECH and 'Università di Modena e Reggio Emilta (USA) Reduction of the gate leakage current in nMOS high-k devices is demonstrated by an engineered two-step deposited Hf-based high-k dielectric film. The electrical characteristics and reliability of the devices fabricated using the proposed two-step and conventional one-step high-k gate stacks are shown to be comparable.	14:45 D-8-5 Bandgap Control Using Strained Beam Struc- tures for Si-Based Photonic Devices K. Yoshimoto, R. Suzuki, Y. Ishikawa and K. Wada, Univ. of Tokyo (Japan) We propose method to control bandgap using Si micro-beam structure, and got significant bandgap change (~0.2eV) by inducing mechanical stress on it. This amount of strain (~1.5%) cannot be achieved by previous methods.	Beed talk reference for 100 years at 50 C. 15:00 E-8-5 (Late News) Microstructural Characterization in Reliability Measurement of PRAM J. Bae, K. Hwang, K. Park, S. Jeon, D. H. Kang, S. Park, J. Ahn, S. Kim, G. Jeong and C. Chung, Samsung Electronics Co., Ltd. (Korea) The cell failures after cycling endurance in PRAM have been classified into 3 groups (Stuck set, Stuck reset, tails from reset distribution), which have been analyzed by TEM.	
			15:00 D-8-6 Strained SiGe-on-Si beam for tunable near- infrared light emission <i>R. Suzuki', K. Yoshimoto, L. Décosterd^{1,2}, Y.</i> <i>Ishikawa' and K. Wada, ¹Univ. of Tokyo and ²Ecole</i> <i>Polytechnique Fédérale de Lausanne (Japan)</i> We propose a method to control the wavelength of near-infrared light emission from a beam-shaped germanium-rich SiGe by applying mechanical stress. Photoluminescence spectra show a bandgap nar- rowing under external stress, indicating a tunability of emission wavelength by applying a mechanical stress.		

4F 243	4F 244	4F 245	4F 246	2F 222	2F 223
G-8: Bio Nanofusion Technologies (Area 11)	H-8: 3D Integration (Area 2)	I-8: Crystulline and Thin Film Silicon Solar Cell (I) (Area 14)		K-8: Si and Ge-based Materials and De- vices (Area 8)	
14:00 G-8-2 Planer Multi Electrode Array Coupled CMOS Image Sensor for in vitro Electrophysiology A. Nakajima ¹ , T. Noda ^{1,2} , K. Sasagava ^{1,2} , T. Tokuda ^{1,2} , Y. Ishikawa ^{1,2} , S. Shiosaka ^{1,2} and J. Ohta ^{1,2} , ¹ NAIST and ² JST-CREST (Japan) Multi-electrode Array Coupled CMOS image (MARC) sensor was designed for <i>in vitro</i> electro- physiology. We report design of MARC sensor, fabrication of Pt black microelectrode and a prelim-	14:00 H-8-2 Self-Assembly with Metal Microbump-to-Mi- crobump Bonding for Advanced Chip-to-Wafer 3D Integration <i>E. Iwata, Y. Ohara, K. W. Lee, T. Fukushima, T.</i> <i>Tanaka and M. Koyanagi, Tohoku Univ. (Japan)</i> We demonstrate highly productive microbump- to-microbump bonding method for the chip-to- wafer 3D integration. We aligned chips onto Si wafer using self-assembly method and established conduction of daisy chains having 5-, 10-um-size microbumps.	14:00 1-8-2 Enhanced Power Conversion Efficiency for Silicon Solar Cells Utilizing a Uniformly Distributed Indium-Tin-Oxide Nano-Whiskers C. H. Chang ¹ , M. H. Hsu, W. L. Chang ² , W. C. Sun and P. Yu, "National Chiao Ting Univ. and ¹ Indus. Tech. Res. Inst. (Taiwan) Distinctive ITO nano-whiskers, grown by electronbeam evaporation, have been employed as a cost-effective ARC for Si solar cells. The nanostructure exhibits excellent anti-reflection for the wavelength range of 450nm-1050nm. The ITO-whiskers cell achieves 17.1% efficiency.		13:45 K-8-2 Formation of Pyramidal-shaped Etch Pits on Germanium Surfaces Using Catalytic Reactions with Metallic Nanoparticles in Water <i>T. Kawase, K. Nishitani, K. Dei, J. Uchikoshi, M.</i> <i>Morita and K. Arima, Osaka Univ. (Japan)</i> We present an environmentally friendly formation of pyramidal-shaped etch pits on a Ge(100) sur- face with metallic nanoparticles in water. We also discuss a possible mechanism by electronic energy relationships.	
Spectrometry System S. Kumagai ¹ , H. Matsuyama ¹ , M. Hori ² and M.	14:20 H-8-3 Metal Micro-Bump Induced Stress in 3D-LSIs _ a micro-Raman Study M. Murugesan, Y. Ohara, J. C. Bea, K. W. Lee, T. Fukushima, T. Tanaka and M. Koyanagi, Tohoku Univ. (Japan) In the flip-chip bonded 3D-LSI die/wafer via metal micro bump, the metallic micro-joint exerted a large compressive stress for the region underneath the micro-bump, and it is extended up to more than 10 µm. Since this value is pretty close to the deple- tion region thickness, and for extremely thin LSI die/wafer it would have an adverse impact on the device characteristics.	14:15 1-8-3 Microstructures of polycrystalline silicon films formed through explosive crystallization induced by flash lamp annealing K. Ohdaira ^{1,1} , S. Ishii ¹ , N. Tomura ¹ and H. Mat- sumura ^{1,1} , JAIST and ¹ JST (Japan) Flash lamp annealing (FLA) induces explosive crystallization, lateral crystallization driven by the liberated latent heat, and TEM observations have clarified the microstructures of the flash-lamp- crystallized poly-Si films having periodic two char- acteristic regions formed spontaneously during the explosive crystallization.		14:00 K-8-3 Fabrication of defect-free and relaxed Ge-rich SGOI-wire structures for CMOS applications <i>M. Oda, Y. Moriyama, K. Ideda, Y. Kamimuta and</i> <i>T. Tezuka, MIRAI-TOSHIBA (Japan)</i> Strain-relaxed and defect-free SGOI wire structures were demonstrated by the proposed condensation- melting-recrystallization process. This technique will enable us to fabricate non-planar Ge-rich SGOI CMOS devices with additional stressor techniques for high-performance or low-power consumption applications.	
IR Waves for Downsizing Sensor Module K. Masuno, S. Kumagai and M. Sasaki, Toyota Technological Inst. (Japan) New narrow-band wavelength selective IR emit- ter suitable for downsizing is proposed. Radiance peak at λ =1.67µm, which corresponds to Wood's anomaly of grating, and higher power efficiency are confirmed.	14:40 H-8-4 (Late News) High Density and Power Efficient SiP with SCS Technology E. Hosomi', Y. Matsubara', Y. Fujimoto', M. Oida', H. Ezawa', M. Fukuda', K. Numata' and K. Myamoto', 'Toshiba Corp. and 'J-Devices Corp. (Japan) SiP with SCS (stacked chip SoC) enables high bandwidth connection between logic and memory devices. SCS technology has advantage against eDRAM in reliability and cost. SCS offers low power solution compared to the conventional SiP structure with wire bonding.	14:30 I-8-4 Stacked Solar Cells using Transparent and Con- ductive Adhesive J. Takenezawa ¹ , M. Hasumi ¹ , T. Sameshima ¹ , T. Koida ² , T. Kaneko ² , M. Karasawa ² and M. Kondo ² , ¹ Tokyo Univ. of Agri. And Tech. and ² AIST (Japan) We demonstrate multi-junction solar cells by stack- ing top a-Si:H p-in- cell on bottom HIT silicon cell using polyimide transparent adhesive dispersed with ITO conductive particles. The Voc increased to 1.34V under illumination of AM 1.5.		14:15 K-8-4 Fabrication of Poly-Si TFT on Polycarbonate Substrate at Temperatures below 135°C G. Nakagawa ¹ , N. Kawamoto ² , T. Imamura ¹ , Y. Tomizowa ¹ , T. Miyoshi ² , K. Tadatomo ² and T. Asa- no ² , "Kyushu Univ.," Yamaguchi Univ. and "TEJJIN Ltd. (Japan) We demonstrate the fabrication of poly-Si TFTs on polycarbonate substrate at temperatures below 135°C, i.e. well below the glass transition tempera- ture of polycarbonate. TFTs whose electron mobil- ity is over 10 cm ³ /Vs can be fabricated.	
14:45 G-8-5 Fabrication and Location of 3-nm Pt Wires onto Silicon Surfaces M. Kobayashi ^{1,2} , K. Onodera ² , Y. Watanabe ³ , K. Shiba ¹ and I. Yamashita ²⁴ , ¹ Japanese Foundation for Cancer Res., ¹ NAIST, ³ Univ. of Tokyo and ¹ Pa- nasonic Corp. (Japan) Fabrication and location of high aspect ratio 3-nm Pt wires onto silicon surfaces was achieved using a tube-shaped tobacco mosaic virus, which could not be achieved using conventional lithography.		 14:45 I-8-5 In-situ observation of polycrystalline Si thin films grown using Al-doped ZnO on glass sub- strate by the aluminum-induced crystallization M. Jung '.A. Okada', T. Saito, T. Suemasu' and N. Usami', 'Tohoku Univ. and 'Univ. of Tsukuba (Ja- pan) Recently, the poly-Si thin film grown on glass substrate is attracting for large area electronic and solar cell applications [1,2]. As a common approach of crystallizing amorphous Si (a-Si), there are solid phase crystallization [3], excimer laser annealing [4], and metal-induced crystallization (MIC) [5-7]. Among them, the MIC process using metals such as Ni, Ag. Al, and Au is promising to obtain large- grained high quality material with low thermal budget. 15:00 I-8-6 Photothermal Spectroscopy by Atomic Force 		 14:30 K-8-5 Strain-Induced Back Channel Electron Mobility Enhancement in Poly-Si TFTs Formed by Continuous-Wave Laser Lateral Crystallization S. Fujit, S. I. Kuroki, K. Kotani and T. Ito, Tohoku Univ: (Japan) The back interface of the CLC poly-Si films had larger tensile strain than the surface. As a result, back channel electron mobility was 1.2 times larger than front channel electron mobility. 14:45 K-8-6 Epitaxial NiSi, Buffer Technique for Fluoride 	
		Microscopy on Crystalline Silicon Solar Cell Materials K. Hara and T. Takahashi, Univ. of Tokyo (Japan) We have performed the PT spectroscopy by AFM on single crystalline Si solar cell materials and dis- cussed the influences of the surface recombination as well as the minority carrier diffusion length on the PT signals.		Epiraxiai NSi, Buffer Technique for Fuloride Resonant Tunneling Devices on Si K. Takahashi, Y. Yoshizumi, Y. Fukuoka, N. Saito and K. Tsutsui, Tokyo Tech (Japan) To fabricate CaF2/CdF2/CaF2 RTDs on Si, we propose the introduction of NiSi2 buffer layers to control the chemical reaction between Si and CdF2. We investigated the growth condition of NiSi2 on Si.	
		Coffee Break	x (2F Forum)		

	Friday, September 24							
1F 211	1F 212	1F 213	2F 221	4F 241	4F 242			
A-9: Organic Transistors and Device Fabrication II (Area 10) (15:30-17:15) Chairs: S. Aratani (Hitachi, Ltd.) M. Nakamura (Chiba Univ.)	B-9: Interface and Strain Characteriza- tion (Area 1) (15:30-17:10) Chairs: O. Nakatsuka (Nagoya Univ.) S. Migita (AIST)	C-9: Emerging Device Technology (Area 3) (15:30-17:15) Chairs: D. Hisamoto (Hitachi, Ltd.) S. Hayashi (Panasonic Corp.)	(15:30-17:15) Chairs: H. Yamada (Tohoku Univ.) M. Tokushima (AIST)	E-9: ReRAM (Area 4:) (15:30-17:15) Chairs: K. Ishihara (Sharp Corp.) K. Hamada (Elpida Memory, Inc.)	F-9: Spintronics (IV) - Device and Cir- cuits - (Area 12) (15:30-17:00) Chairs: K. Ando (AIST) M. Yamamoto (Hokkaido Univ.)			
15:30 A-9-1 Excellent interface properties of pentacene based metal-oxide-semiconductor diodes utiliz- ing HfON higk-x gate insulator <i>M. Liao, Y. U. Song, J. Ishikawa, T. Sano, J. Gao,</i> <i>H. Ishiwara and S. Ohni, Tokyo Tech (Japan)</i> Pentacene based MOS diodes using SiO ₂ , HfO ₂ and HfON as gate insulators were investigated. It was found that pentacene based MOS diodes with HfON gate insulators show a small flat-band volt- age shift and a negligible frequency dispersion in C-V characteristics.	15:30 B-9-1 Measurements of Electrostatic Potential Across p-n Junctions on Oxidized Si Surfaces by Scan- ning Multi-Mode Tunneling Spectroscopy L. Bolotov, T. Tada, M. Iitake, M. Nishizawa and T. Kanayama, AIST (Japan) High-resolution measurements of the surface po- tential was demonstrated on oxidized Si surfaces by scanning multi-mode tunneling spectroscopy at optimized tunneling gap. The potential maps agree with build-in potential for p-n junctions, while nanometer-scale fluctuations were caused by struc- tural and charge variations.	15:30 C-9-1 (Invited) CVD Graphene for High Speed Electronics B. C. Huang, C. Q. Miao, Y. Wang, Y. H. Xie and J. C. S. Woo, UCLA (USA) Few-layer graphene film was deposited on Ni film and Ni dots using CVD method. Under low temper- ature growth condition, the uniformity of graphene was remarkably improved. Top-gated graphene transistors are made by transferring the graphene film onto a SiO2 substrate. Ambipolar conduction is clearly observed from I _{DS} -V _{OS} curve	 15:30 D-9-1 Real-time synchrotron radiation X-ray diffraction and abnormal temperature dependence of photoluminescence from erbium silicates on SiO₂/Si substrates H. Omi¹, T. Tawara¹, M. Tateishi¹, H. Komatsu¹, S. Takeda², Y. Tsusaka³, Y. Kagoshima³ and J. Matsu², ¹NTT Basic Res. Labs., ²Univ. of Hyogo and ³CAST (Japan) We characterized the formation of erbium silicates on silicon oxide films in real time using synchroron radiation grazing incidence X-ray diffraction (GIXD). We also characterized light emission from the erbium silicates by photoluminescence measurements. 	15:30 E-9-1 (Invited) Overview and Future Challenges of Hafnium Oxide ReRAM Y. S. Chen ^{1,2} , H. Y. Lee ^{1,2} , P. S. Chen ¹ , P. Y. Gu ¹ , Y. Y. Hsu ¹ , W. H. Liu ¹ , C. H. Tsai ¹ , S. M. Wang ¹ , S. S. Sheu ¹ , P. C. Chiang ¹ , W. P. Lin ¹ , W. S. Chen ¹ , F. T. Chen ¹ , C. H. Lien ² and M. J. Tsai ¹ , ¹ ITRI, ³ National Tsing Hua Univ. and ³ Mingshin Univ. of Sci. and Tech. (Taiwan) A highly reliable Hafnium Oxide ReRAM with high speed, low power operation, and excellent reliabilities including nonvolatility and endurance is demonstrated. A 1 Kb array with robust cycling endurance can be achieved by effective verifica- tions. Some challenges must be overcome to realize this memory as a promising nonvolatilit memory.	15:30 F-9-1 (Invited) Spin transfer torque effects in nanopillar devices with perpendicular anisotropy S. Mangin, IJL – Nancy Université (France) Spin-polarized current is used to reverse magnetiza- tion orientation in nanomagnets with strong perpen- dicular anisotropy. We will discuss the efficiency of such geometry, dynamic behaviours as well as domain nucleation and propagation while a field is applied and a current is injected in the nanopillar			
15:45 A-9-2 Oxygen Plasma Process of Self-assembled Mono- layer Gate Dielectric for 2-V Operation High- mobility Organic TFT K. Kuribara', T. Nakagawa', K. Fukuda', T. Yokota', T. Sekitani', U. Zschieschang', H. Klauk ² , T. Someya', T. Yamamoto' and K. Takimiya', 'Univ. of Tokyo, ² Max Planck Inst for Solid State Res. and 'Hiroshima Univ. (Japan) We optimized parameters of oxgen plasma process of self-assembled monolayer gate dielectric for or- ganic TFTs. Short exposure time of plasma process (200 W, 30 sec.) products good transistors with high mobility of 0.97 cm ² /Vs and small hysteresis.	15:50 B-9-2 Interfacial atomic structure between Pt-added NiSi and Si (001) N. Ikarashi, M. Narihiro and T. Hase, Renesas Electronics Corp. (Japan) HAADF-STEM revealed that Pt segregates at lattice-matched areas of the interface and occupied the Ni sites at the first interfacial atomic layer of NiSi. This finding shows that Pt segregates to lower the interfacial strain, reducing the interface energy. Thus, we infer that the interface-energy lowering results in the NiSi layer being stabilized.	16:00 C-9-2 High Hole-Mobility 65nm Biaxially-Strained Ge- pFETs: Fabrication, Analysis and Optimization J. Mitard', B. De Jaeger', G. Eneman ²³ , A. Dob- bie', M. Myronov', M. Kobayashi', J. Geypen', H. Bender', B. Vincent', R. Krom', J. Franco', G. Win- dericka', E. Vrancken', W. Yanherle', W. E. Wang', J. Tseng ⁶ , R. Loo', K. De Meyer', M. Caymax', L. Pantisano', D. R. Leadley', M. Meuris', P. P. Absil', S. Biesemans' and T. Hoffmann', 'IMEC, 'K.U Leu- ven, 'IFWO, 'Univ. of Warwick, 'Stanford Univ. and ⁴ TSMC (Belgium) High hole-mobility 65nm biaxially-strained Ge- pFETs, with reduced EOT while maintaining mini- mized SCE, have been fabricated and electrically characterized in-depth for the low and high field transport. We demonstrate a 35%-I _{ox} gain for nano- scaled s-Ge pFETs.	15:45 D-9-2 Evaluation of optical absorption and light prop- agation loss in Er _x Y _{2x} SiO ₅ crystal waveguides <i>K</i> . Homma, <i>T</i> . Nakajima, <i>T</i> . Kimura and H. Isshiki, Univ. of Electro-Communications (Japan) We demonstrate introduction of ErxY2-xSiO5 to the waveguide, resulting in suppression of CUC in this system. And optical absorption cross section of Er ions and light propagation loss in the ErxY2- xSiO5 crystal waveguide are evaluated.	16:00 E-9-2 A New Tunneling Barrier Width Model of the Switching Mechanism in Hafnium Oxide-Based Resistive Random Access Memory Y. H. Tseng ¹ , S. S. Chung ¹² , S. Shin ² , S. S. M. Kang ² , H. Y. Lee ³ and M. J. Tsai ³ , ¹ National Chiao Tung Univ., ² Univ. of California, Merced and ³ ITRI (Tai- wan) In this paper, the switching characteristics of TVHH02/TiN resistive random access memory (RRAM) have been examined. A novel tunneling barrier width model based on WKB approximation is proposed to explain the pertinent current-voltage characteristic and the origin of the resistance chang- ing in RRAM.	 16:00 F-9-2 High Speed Spin-Transfer Switching in GMR Nanopillars with Perpendicular Anisotropy H. Tomita¹, T. Nozaki¹, T. Seki¹, T. Nagase², E. Kitagawa², M. Yoshikawa², T. Daibou², M. Naga- mine², S. Ikegawa², N. Shimomura², H. Yoda² and Y. Suzuki¹, ¹Osaka Univ. and ²Toshiba R & D center (Japan) We investigated high-speed (sub-nano second) spin- transfer switching property in giant magnetoresis- tance (GMR) nanopillar systems with perpendicular magnetic anisotropy. 			
16:00 A-9-3 Direct observation of carrier behavior leading to electroluminescence in tetracene field-effect transistor Y. Ohshima, H. Satou, T. Manaka, H. Kohn, N. Hi- rako and M. Iwamoto, Tokyo Tech (Japan) We probed the carrier behavior leading to the elec- troluminescence under AC electric field in tetracene field-effect transistor using optical second harmonic generation technique, and clarified the space charge field effect on carrier injection.	16:10 B-9-3 TO- and LO-mode analyses in asymmetric stretching vibrations in ultra thin thermally grown GeO ₂ on Ge substrate <i>M. Yoshida'</i> , <i>T. Nishimura¹²</i> , <i>C. H. Lee'</i> , <i>K. Kita¹²</i> , <i>K. Nagashio¹² and A. Toriumi¹²</i> , ¹ Univ: of Tokyo and ² JST-CREST (Japan) A IR investigation of thin GeO ₂ was performed for the first time, with a conscious of both TO and LO modes. Local bond feature such as the bridging bond angle is governed by the oxidation tempera- ture just like that in SiO ₂ , while macroscopic one such as void defect seems to be determined by both temperature and pO ₂ .		16:00 D-9-3 Design and Simulation of Silicon Ring Optical Modulator with p/n Junctions along Circumfer- ence Y. Amemiya, H. Ding and S. Yokoyama, Hiroshima Univ. (Japan) Silicon ring optical modulator with p/n junctions along circumference is proposed. Its performance at 1 V is simulated. The modulation > 95% is obtained at 1x10 ¹⁷ -5x10 ¹⁷ cm ³ carrier concentration and propagation loss < 5 dB/cm.		16:15 F-9-3 Hierarchical Nonvolatile Memory with Perpen- dicular Magnetic Tunnel Junctions for Normal- ly-Off Computing K. Abe, K. Nomura, S. Ikegawa, T. Kishi, H. Yoda and S. Fujita, Toshiba Corp. (Japan) Hierarchical nonvolatile-memory composed of embedded-MRAM for L3 cache and nonvolatile- SRAM with MTJs for L2 cache is proposed. The average power of microprocessor with the hierar- chical nonvolatile-memory is reduced by 65% in long standby time.			
16:15 A-9-4 Diffuser micropump structured with extremely flexible diaphragm of 2 micron-thick polyimide film Y. Liu, H. Komatsuzaki, Z. Duan and Y. Nishioka, Nihon Univ. (Japan) The simple structured air-actuated valveless micropump with the 2.1 micron-thick polyimide membrane was designed, fabricated and measured. The micropump was fabricated on the 60 micron- thick thin Si wafer using surface micromachining techniques.	16:30 B-9-4 Quantitative Analysis of Stress Relaxation in TEM specimen fabrication by Raman Spectros- copy with High-NA Oil-Immersion Lens D. Kosemura ^{1,2} and A. Ogura ^{1, M} eiji Univ. and ² JSPS (Japan) The stress relaxation in the TEM specimens of SSOI was evaluated by Raman spectroscopy with high-NA oil-immersion lens. It was confirmed that the values of the relaxation was 75% at the thick- ness of 240 nm.	16:40 C-9-4 Analysis of the Junctionless Transistor Architec- ture J. P. Colinge ¹ , J. P. Raskin ² , A. Kranti ¹ , I. Ferain ¹ , C. W. Lee ¹ , N. Dehdashti Akhavan ¹ , P. Razavi ¹ , R. Yan ¹ and R. Yu ¹ , ¹ Univ. College Cork. and ² Univer- sité catholique de Louvain (Ireland) Strain is used to improve mobility in junctionless transistors. A bulk silicon version of the device is studied by simulation, and performance similar to that of the SOI version of the device are obtained.	16:15 D-9-4 Design of Broadband Optical Switch Based on Mach-Zehnder Interferometer with Si wire Waveguides K. Kintaka, Y. Shoji, S. Suda, H. Kawashima, T. Hasama and H. Ishikawa, AIST (Japan) 2x2 optical switches based on Mach-Zehnder inter- ferometer (MZI) with Si wire waveguides are de- signed for broadband operation. Wavelength depen- dences of MZI switches using directional couplers, multimode interference couplers, and wavelength- insensitive couplers are calculated numerically.	16:40 E-9-4 Effects of Reactive Ti Creating Oxygen Vacancy Inside TiO, on Resistive Switching Characteris- tics in Resistive Random Access Memory Device S. J. Kim, M. G. Sung, W. G. Kim, J. Y. Kim, J. H. Yoo, J. N. Kim, B. G. Gyun, J. Y. Byun, M. S. Joo, J. S. Roh and S. K. Park, Hynix Semiconductor Inc. (Korea) The effects of reactive Ti layer on the resistive switching characteristics of TiO2-based ReRAM are investigated. Ti acts as a good oxygen gettering layer which makes the TiO2 to have a higher con- centration of oxygen vacancy.	16:30 F-9-4 Design of a Process-Variation-Aware Nonvolatile MTJ-Based Lookup-Table Circuit D. Suzuki, M. Natsui, H. Ohno and T. Hanyu, To- hoku Univ. (Japan) This paper presents a process-variation-aware non- volatile lookup table circuit for nonvolatile field- programmable gate array with ultra-low power and immediate wakeup capability using MOS/MTJ hybrid structure.			

			ptember 24		
4F 243	4F 244	4F 245	4F 246	2F 222	2F 223
G-9: Nanomaterial Applications (Area 11) (15:30-16:30) Chairs: I. Yamashita (NAIST) K. Sawada (Toyohashi Univ. of Tech.)	H-9: Image Sensor (Area 2) (15:30-16:25) Chairs: M. Kodera (Toshiba Corp.) M. Matsuura (Renesas Electronics Corp.)	I-9: Crystulline and Thin Film Silicon Solar Cell (II) (Area 14) (15:30-16:45) Chairs: Y. Hayashi (AIST) N. Usami (Tohoku Univ.)			
 15:30 G-9-1 Free-Standing Lipid Bilayers Based on Nanoporous Alumina Films A. Hirano-Iwata^{1,2}, T. Taira¹, A. Oshima¹, Y. Kimura¹ and M. Niwano¹, ¹Tohoku Univ: and ²PRESTO, JST (Japan) Mechanical stability of free-standing bilayer lipid membranes (BLMs) was improved by suspending the BLMs in nanoporous alumina films. The membrane stability was investigated in terms of lifetime and breakdown voltage. 	 15:30 H-9-1 Characterization of LTO coating on microlens of CMOS image sensor J. Gambino, B. Leidy, C. Musante, K. Ackerson, B. Guthrie, J. Twombly, E. Cooney, P. Pokrinchak, D. Meatyard, J. Adkisson, R. J. Rassel and M. Jaffe, IBM (USA) CMOS image sensors with an LTO coating on the microlens have been characterized for dark current, quantum efficiency, and reliability. 	15:30 I-9-1 (Invited) Impact of Metal Contamination in Silicon Solar Cells G. Coletti, ECN Solar Energy (the Netherlands) Impact of transition metals on the conversion ef- ficiency of silicon solar cells is presented. Fe, Cr and Ti reduce the internal quantum efficiency (IQE) at long wavelength reducing the carrier diffusion length. Ni reduces the IQE at short wavelength increasing recombination in the solar cell emitter region. Cu reduces the IQE at both short and long wavelength. A physical model is presented explain- ing the data.			
 15:45 G-9-2 Fabrication of CMOS-compatible Poly-Si Nano- wire FET Sensor H. Y. Chen^{1,2}, C. Y. Lin², M. C. Chen², H. C. Chen², C. C. Huang² and C. H. Chien^{1,2}, ¹National Chiao Tung Univ. and ²National Nano Device Labs. (Tai- wan) A low-cost, superior uniformity Poly-Si nanowire FET sensor fabrication method features entire CMOS processing is presented. A self-aligned nanowire fabrication in bulk-Si technology is also disclosed for the first time for highly integrated sen- sor system design. 	15:50 H-9-2 Near-Infrared Image Sensor Fabricated Using Compliant Bump N. Watanabe ^{1,3} , F. Hoashi ¹ , Y. Nagai ² , H. Inada ² , Y. Iguchi ² and T. Asano ¹ , 'Kyushu Unix, 'Sumitomo Electric Industries, Ltd. and ³ Fukuoka Industry Sci. and Tech. Foundation (Japan) We demonstrated a near-infrared image sensor in which an InGaAs/InP photodiode chip was electri- cally connected to a CMOS read-out circuit chip through compliant bumps.	16:00 1-9-2 Optimum design of a-Si:H/µc-Si:H tandem thin film solar cells with a low-refractive-index AZO transparent conducting oxide J. W. Leem and J. S. Yu, Kyung Hee Univ. (Korea) Aluminum-doped zinc oxide (AZO) thin films with low-refractive-index (low-n) as a transparent con- ducting oxide (TCO) layer for Si solar cells are de- posited on Si and glass substrates by rf magnetron sputter using an oblique angle deposition technique. To improve the efficiency, the a-Si:H/µc-Si:H tan- dem solar cells with a TCO layer of low-n AZO are designed using a Silvaco ATLAS simulation.			
 16:00 G-9-3 (Late News) Carbon nanotube-based sensor Device compat- ible with the CMOS process J. T. Huang, P. L. Hsu, T. H. Lin, W. T. Hsieh, K. Y. Lee, C. K. Chen and T. C. Tsai, National Taipei Univ. of Tech. (Taiwan) This paper presents a low temperature fabrication method of Carbon Nanotubes(CNTs)-based sensors device on a CMOS integrated circuit chip made by TSMC 0.35µm CMOS process. 	16:10 H-9-3 (Late News) MEMS Resonance Test for Mechanical Charac- terization of Nano-Scale Thin Films H. Yamagiwa ¹ , D. Goto ¹ , T. Namazu ¹ , T. Takeuchi ² , K. Murakami ² , Y. Kawashimo ² , T. Takano ¹ , K. Yo- shiki ¹ and S. Inoue ¹ , ¹ Univ. of Hyogo, ² Shinko Seiki Co. Ltd. and ¹ The New Industry Research Organi- zation (Japan) The purpose of this study is to develop a quantita- tive measurement method for the Young ¹ s modulus of nanometer-thick films. We developed the test technique using a MEMS resonator array and measured the Young ¹ s moduli of Al and plasma- polymerization films made from CH4 and CHF3 gases.	16:15 1-9-3 Efficiency enhancement of a-Si thin film solar cells by using different light trapping structures C. W. Kuo', W. P. Chu', J. S. Lin ²¹ , T. C. Lin', Y. S. Tsai', F. S. Juang', M. H. Chung', T. E. Hsieh' and M. O. Liu ² , ¹ National Formosa Univ., ² Osaka Univ., ¹ Industrial Tech. Res. Inst., 'KunSan Univ. and ³ Na- tional Chiao Tung Univ. (Taiwan) This study produced various light trapping struc- tures in order to enhance efficiency for a-Si solar cells. When combining V-shape with a cross-like pattern, Jsc and efficiency were shown to increase to 12.35mA/cm2 and 6.29%, respectively.			
16:15 G-9-4 (Late News) Light-Addressable Potentiometric Sensors for Sodium Ion Detection by Fluorinated-Atomic Layer Deposition Hafnium Oxide Membrane C. H. Chin ¹ , J. H. Yang ¹ , T. F. Lu ¹ , C. E. Lue ¹ , C. M. Yang ² and C. S. Lai ¹ , ¹ Chang Gung Univ. and ² Inotera memories Inc. (Taiwan) In this study, an inorganic method was investigated for Na+ detection based on LAPS. The sensing membrane, HfO2 layer, was deposited by ALD and treated by RTA and CF4 plasma. The pH sensitivity was decreased and pNa sensitivity was increased by CF4 plasma. Finally, the highest pNa sensitivity was 34.8 mV/pNa measured from pNa 1 to pNa 4.		16:30 1-9-4 Three-terminal a-Si solar Cells C. H. Tai, C. H. Lin, C. M. Wang and C. C. Lin, National Dong Hua Univ. (Taiwan) A new back-to-back pin-nip structure increases the average electric field in a solar cell. The 0.28- m-thick three-terminal a-Si solar cell achieved an efficiency of 11.4 %.			

1F 211	1F 212	1F 213	2F 221	4F 241	4F 242
A-9: Organic Transistors and Device Fabrication II (Area 10)	B-9: Interface and Strain Characteriza- tion (Area 1)	C-9: Emerging Device Technology (Area 3)	D-9: Si Photonics (2) (Area 7)	E-9: ReRAM (Area 4:)	F-9: Spintronics (IV)- Device and Circuits - (Area 12)
16:30 A-9-5 Printed Electrode for All-Printed Polymer Diode M. Yoshida, K. Suemori, S. Uemura, S. Hoshino, N. Takada, T. Kodzasa and T. Kamata, AIST (JAPAN) We have developed a mechanical sintering technique, printed electrode with various work functions from 3.5eV to 5eV could be prepared on a plastic substrate. These printed alloys were effec- tive to improve the performance of printed diode and transistors.	ping in SOI Micro-Structures by Polarized Ra- man Spectroscopy M. Kurosawa ¹² , T. Sadoh ¹ and M. Miyao ¹ , ¹ Kyushu Univ. and ² JSPS (Japan) We have newly developed a polarized Raman spec- troscopy technique, which uses special polarization	M. White, A. M. Kelleher, B. McCarthy, S. Gheo- rghe, R. Murphy and J. P. Colinge, Univ. College Cork (Ireland) Junctionless silicon nanowire transistors with a gate length down to 50 nm have been demonstrated. The devices show very small short-channel effects:	16:30 D-9-5 Development of Accelerometer Using Mach- Zehnder Interferometer Type Optical Wave- guide M. Suzuki ¹ , K. Nishioka ¹ , T. Takahashi ¹ , S. Aoyagi ¹ , Y. Amemiya ² , M. Fukuyama ² and S. Yokoyama ² , ¹ Kansai Univ. and ² Hiroshima Univ. (Japan) A novel inertial force sensor which uses a Mach- Zehnder Interferometer (MZI) type optical wave- guide made of crystal silicon is developed. In this sensor, one branched waveguide of the MZI have floating beam structure which is formed by removal of its underlying SiO2 layer.	17:00 E-9-5 (Late News) Novel Low Power RRAM with a U-type Cell Structure for Improving Resistive Switching Characteristics K. C. Ryool ² , J. H. Oh ¹² , S. Jung ¹ , H. Jeong ² and B. G. Park ¹ , 'Seoul National Univ. and ² Samsung Electronics Co., Ltd. (Korea) We propose a novel RRAM structure which makes it possible to reduce the reset current by controlling the number of the electrical path. Numerical simu- lation is also performed to investigate the optimal process condition.	16:45 F-9-5 (Late News) Magnetic Field Dependence of Quadrupoar Splitting and Nuclear Spin Coherence in a (110) GaAs/AIGaAs Quantum Well J. Ishihara, M. Ono, G. Sato, S. Matsuzaka, Y. Ohno and H. Ohno, Tohoku Univ. (Japan) We investigated magnetic field dependences of qua- drupoar splitting in the NMR spectrum, the nuclear decoherence time, and the dephasing time involv- ing the inhomogeneous broadening in a (110) GaAs quantum well (QW).
16:45 A-9-6 A Tunable Emission Prepared by Novel Photo- induced Color-Change Materials W. T. Liu and W. Y. Huang, National Sun Yat-sen Univ. (Taiwan) An organic phospher C-545T was used as a green light dopant in this study. After protonation the protonated C-545T could be transformed into an orange or red emitter depending on the degree of protonation. Accordingly, green, orange and red emitting layers were fabricated by doping C-545T in PAG containing resin with different light expo- sures. In conjunction with a blue-light pumping source, the above emitting layers could be easily integrated into a white light emission.			16:45 D-9-6 10-GHz Operation of a PLZT Electro-Optic Modulator with a Ring Resonator Formed on a Silicon Substrate T. Shimizu ⁽²⁾ , M. Nakada ¹ , H. Tsuda ³ , H. Miyazaki ¹ , J. Akedo ³ and K. Ohashi ^{1,2} , ¹ MIRAI-Selete, ² NEC Corp. and ³ AIST (Japan) We developed a PLZT electro-optic modulator with a ring resonator formed on silicon substrate by aerosol deposition. A 10-GHz optical output signal was produced by the modulator with a resonator size of 150x190 micron.		
17:00 A-9-7 (Late News) Fabrication of Sol-Gel Alumina Dielectric for Low-Voltage Operating Pentacene Transistor K. K. Han' and S. Seo ² , 'Seoul National Univ. and 'Exyangwon Univ. (Korea) A sol-gel alumina dielectric for pentacene transistor has been introduced. With this alumina dielectric, the low voltage pentacene thin film transistor is fabricated and it is free from the threshold voltage shift problems.			17:00 D-9-7 Crosstalk inprovement in Si-wire optical cross- bar switch H. Kawashima, Y. Shoji, K. Kintaka, S. Suda, T. Hasama and H. Ishikawa, AIST (Japan) Improvement of crosstalk by cascading Si-wire cross-bar switches is demonstrated. Achieved low- est crosstalk is -50 dB for the bar state and is -30 dB for the cross state. We discuss on the limiting factors.		

4F 243	4F 244	4F 245	4F 246	2F 222	2F 223
G-9: Nanomaterial Applications (Area 11)	H-9: Image Sensor (Area 2)	I-9: Crystulline and Thin Film Silicon Solar Cell (\Bar{I}) (Area 14)			